skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ren, Haoze"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electrode architectures significantly influence the electrochemical performance, flexibility, and applications of lithium‐ion batteries (LiBs). However, the conventional bar coating for fabricating electrodes limits the addition of customized architecture or patterns. In this study, as a novel approach, patterns are integrated into electrodes through large‐scale roll‐to‐roll (R2R) flexographic printing. Additionally, flexible, recyclable, and biodegradable paper are innovatively used as a printing substrate during printing LiBs manufacturing, which exhibited superior printability. Moreover, the paper is modified with a thin‐layer Al2O3to function as the separator in the printed LiB. The Al2O3‐coated paper enables an admirable wettability for printing, excellent mechanical properties for high‐speed R2R manufacturing, and outstanding thermal stability for the safe and stable operation of LiBs. The assembled paper cells exhibit nearly 100% discharge capacity retention after 1000 cycles at 3 C and outstanding rate performance. This work inspires future large‐scale microbatteries manufacturing integrated with high‐resolution architecture designs. 
    more » « less