Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Differential item functioning (DIF) screening has long been suggested to ensure assessment fairness. Traditional DIF methods typically focus on the main effects of demographic variables on item parameters, overlooking the interactions among multiple identities. Drawing on the intersectionality framework, we define intersectional DIF as deviations in item parameters that arise from the interactions among demographic variables beyond their main effects and propose a novel item response theory (IRT) approach for detecting intersectional DIF. Under our framework, fixed effects are used to account for traditional DIF, while random item effects are introduced to capture intersectional DIF. We further introduce the concept of intersectional impact, which refers to interaction effects on group-level mean ability. Depending on which item parameters are affected and whether intersectional impact is considered, we propose four models, which aim to detect intersectional uniform DIF (UDIF), intersectional UDIF with intersectional impact, intersectional non-uniform DIF (NUDIF), and intersectional NUDIF with intersectional impact, respectively. For efficient model estimation, a regularized Gaussian variational expectation-maximization algorithm is developed. Simulation studies demonstrate that our methods can effectively detect intersectional UDIF, although their detection of intersectional NUDIF is more limited.more » « lessFree, publicly-accessible full text available September 15, 2026
-
Abstract Covalent 2D magnets such as Cr2Te3, which feature self‐intercalated magnetic cations located between monolayers of transition‐metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in Cr2Te3, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self‐intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two‐channel AHE arising from spatial inhomogeneities. Crucially, multiple Weyl‐like nodes emerge in the electronic band structure due to strong spin‐orbit coupling, whose positions relative to the Fermi level is sensitively modulated by the canting angles of the self‐intercalated Cr cations. These nodes contribute strongly to the Berry curvature and AHE conductivity. This component competes with the contribution from bands that are less affected by the self‐intercalation, resulting in a sign change in AHE with temperature and the emergence of additional humps and dips. The findings provide compelling evidence for the intrinsic origin of the unconventional AHE in Cr2Te3 and further establish self‐intercalation as a control knob for engineering AHE in complex magnets.more » « less
An official website of the United States government
