skip to main content


Search for: All records

Creators/Authors contains: "Ren, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The far-from-equilibrium solidification during additive manufacturing often creates large residual stresses that induce solid-state cracking. Here we present a strategy to suppress solid-state cracking in an additively manufactured AlCrFe2Ni2high-entropy alloy via engineering phase transformation pathway. We investigate the solidification microstructures formed during laser powder-bed fusion and directed energy deposition, encompassing a broad range of cooling rates. At high cooling rates (104−106 K/s), we observe a single-phase BCC/B2 microstructure that is susceptible to solid-state cracking. At low cooling rates (102−104 K/s), FCC phase precipitates out from the BCC/B2 matrix, resulting in enhanced ductility (~10 %) and resistance to solid-state cracking. Site-specific residual stress/strain analysis reveals that the ductile FCC phase can largely accommodate residual stresses, a feature which helps relieve residual strains within the BCC/B2 phase to prevent cracking. Our work underscores the value of exploiting the toolbox of phase transformation pathway engineering for material design during additive manufacturing.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available April 22, 2025
  3. Free, publicly-accessible full text available January 2, 2025
  4. Free, publicly-accessible full text available November 1, 2024
  5. Abstract

    Under low-potassium (K+) stress, a Ca2+signaling network consisting of calcineurin B-like proteins (CBLs) and CBL-interacting kinases (CIPKs) play essential roles. Specifically, the plasma membrane CBL1/9-CIPK pathway and the tonoplast CBL2/3-CIPK pathway promotes K+uptake and remobilization, respectively, by activating a series of K+channels. While the dual CBL-CIPK pathways enable plants to cope with low-K+stress, little is known about the early events that link external K+levels to the CBL-CIPK proteins. Here we show that K+status regulates the protein abundance and phosphorylation of the CBL-CIPK-channel modules. Further analysis revealed low K+-induced activation of VM-CBL2/3 happened earlier and was required for full activation of PM-CBL1/9 pathway. Moreover, we identified CIPK9/23 kinases to be responsible for phosphorylation of CBL1/9/2/3 in plant response to low-K+stress and the HAB1/ABI1/ABI2/PP2CA phosphatases to be responsible for CBL2/3-CIPK9 dephosphorylation upon K+-repletion. Further genetic analysis showed that HAB1/ABI1/ABI2/PP2CA phosphatases are negative regulators for plant growth under low-K+, countering the CBL-CIPK network in plant response and adaptation to low-K+stress.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL–CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)–CIPK interaction. In contrast, low-K status activates CBL–CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL–CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.

     
    more » « less
    Free, publicly-accessible full text available November 21, 2024
  7. Antibody therapeutics are limited in treating brain diseases due to poor blood-brain barrier (BBB) penetration. We have discovered that poly 2-methacryloyloxyethyl phosphorylcholine (PMPC), a biocompatible polymer, effectively facilitates BBB penetration via receptor-mediated transcytosis and have developed a PMPC-shell-based platform for brain delivery of therapeutic antibodies, termed nanocapsule. Yet, the platform results in functional loss of antibodies due to epitope masking by the PMPC polymer network, which necessitates the incorporation of a targeting moiety and degradable crosslinker to enable on-site antibody release. In this study, we developed a novel platform based on site-oriented conjugation of PMPC to the antibody, allowing it to maintain key functionalities of the original antibody. With an optimized PMPC chain length, the PMPC-antibody conjugate exhibited enhanced brain delivery while retaining epitope recognition, cellular internalization, and antibody-dependent cellular phagocytic activity. This simple formula incorporates only the antibody and PMPC without requiring additional components, thereby addressing the issues of the nanocapsule platform and paving the way for PMPC-based brain delivery strategies for antibodies.

     
    more » « less
    Free, publicly-accessible full text available October 18, 2024