- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Liang, Weixiong (3)
-
Ren, Xianyan (3)
-
Sun, Ya-Ping (3)
-
Wang, Ping (3)
-
Yang, Liju (3)
-
Bunker, Christopher E (2)
-
Cao, Li (2)
-
Bunker, Christopher E. (1)
-
Ge, Lin (1)
-
Hou, Xiaofang (1)
-
McGrath, Hannah (1)
-
Overton, Christopher M (1)
-
Scorzari, Annalise (1)
-
Teisl, Lindsay Rose (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ren, Xianyan; Cao, Li; Liang, Weixiong; Wang, Ping; Bunker, Christopher E.; Yang, Liju; Teisl, Lindsay Rose; Sun, Ya-Ping (, ACS Applied Nano Materials)
-
Liang, Weixiong; Ge, Lin; Hou, Xiaofang; Ren, Xianyan; Yang, Liju; Bunker, Christopher E; Overton, Christopher M; Wang, Ping; Sun, Ya-Ping (, C)The commercially acquired aqueous solution of “carbon quantum dots” sample was evaluated by optical absorption and fluorescence emission methods; in reference to aqueous dispersed small carbon nanoparticles and representative carbon dots prepared from chemical functionalization of the carbon nanoparticles. The results suggest a very low content of carbon that is associated with nanoscale carbon particles/domains in the as-supplied sample; and likely significant contamination by dye-like species/mixtures. In the absence of any information on the synthesis and history of the commercial sample, the possible cause of the contamination was illustrated by an example on similar dye formation in the one-pot carbonization synthesis of “red carbon dots” from citric acid–formamide precursor mixtures under too mild processing conditions that were insufficient for the intended carbonization. The negative impacts to the carbon dots research field by the apparent proliferation and now commercial availability of carbon-deficient or even largely carbon-less “carbon quantum dots”, which are more susceptible to dye contamination or dominance, are discussed.more » « less