skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ren, Yuhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An interacting spin system is an excellent testbed for fundamental quantum physics and applications in quantum sensing and quantum simulation. For these investigations, detailed information on the interactions, e.g., the number of spins and their interaction strengths, is often required. In this study, we present the identification and characterization of a single nitrogen vacancy (NV) center coupled to two electron spins. In the experiment, we first identify a well-isolated single NV center and characterize its spin decoherence time. Then, we perform NV-detected electron paramagnetic resonance (EPR) spectroscopy to detect surrounding electron spins. From the analysis of the NV-EPR signal, we precisely determine the number of detected spins and their interaction strengths. Moreover, the spectral analysis indicates that the candidates of the detected spins are diamond surface spins. This study demonstrates a promising approach for the identification and characterization of an interacting spin system for realizing entangled sensing using electron spin as quantum reporters. 
    more » « less
  2. Understanding the spatial distribution of the P1 centers is crucial for diamond-based sensors and quantum devices. P1 centers serve as polarization sources for dynamic nuclear polarization (DNP) quantum sensing and play a significant role in the relaxation of nitrogen vacancy (NV) centers. Additionally, the distribution of NV centers correlates with the distribution of P1 centers, as NV centers are formed through the conversion of P1 centers. We utilized DNP and pulsed electron paramagnetic resonance (EPR) techniques that revealed strong clustering of a significant population of P1 centers that exhibit exchange coupling and produce asymmetric line shapes. The 13C DNP frequency profile at a high magnetic field revealed a pattern that requires an asymmetric EPR line shape of the P1 clusters with electron–electron (e–e) coupling strengths exceeding the 13C nuclear Larmor frequency. EPR and DNP characterization at high magnetic fields was necessary to resolve energy contributions from different e–e couplings. We employed a two-frequency pump–probe pulsed electron double resonance technique to show cross-talk between the isolated and clustered P1 centers. This finding implies that the clustered P1 centers affect all of the P1 populations. Direct observation of clustered P1 centers and their asymmetric line shape offers a novel and crucial insight into understanding magnetic noise sources for quantum information applications of diamonds and for designing diamond-based polarizing agents with optimized DNP efficiency for 13C and other nuclear spins of analytes. We propose that room temperature 13C DNP at a high field, achievable through straightforward modifications to existing solution-state NMR systems, is a potent tool for evaluating and controlling diamond defects. 
    more » « less
  3. The nitrogen-vacancy (NV) center in diamond has enabled studies of nanoscale nuclear magnetic resonance (NMR) and electron paramagnetic resonance with high sensitivity in small sample volumes. Most NV-detected NMR (NV-NMR) experiments are performed at low magnetic fields. While low fields are useful in many applications, high-field NV-NMR with fine spectral resolution, high signal sensitivity, and the capability to observe a wider range of nuclei is advantageous for surface detection, microfluidic, and condensed matter studies aimed at probing micro- and nanoscale features. However, only a handful of experiments above 1 T were reported. Herein, we report 13C NV-NMR spectroscopy at 4.2 T, where the NV Larmor frequency is 115 GHz. Using an electron-nuclear double resonance technique, we successfully detect NV-NMR of two diamond samples. The analysis of the NMR linewidth based on the dipolar broadening theory of Van Vleck shows that the observed linewidths from sample 1 are consistent with the intrinsic NMR linewidth of the sample. For sample 2 we find a narrower linewidth of 44 ppm. This work paves the way for new applications of nanoscale NV-NMR. 
    more » « less