skip to main content

Search for: All records

Creators/Authors contains: "Renaud, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Type II-P supernovæ (SNe), the most common core-collapse SNe type, result from the explosions of red supergiant stars. Their detection in the radio domain testifies of the presence of relativistic electrons, and shows that they are potentially efficient energetic particle accelerators. If hadrons can also be accelerated, these energetic particles are expected to interact with the surrounding medium to produce a gamma-ray signal even in the multi–TeV range. The intensity of this signal depends on various factors, but an essential one is the density of the circumstellar medium. Such a signal should however be limited by electron–positron pair production arisingmore »from the interaction of the gamma-ray photons with optical photons emitted by the supernova photosphere, which can potentially degrade the gamma-ray signal by over ten orders of magnitude in the first days/weeks following the explosion. We calculate the gamma-gamma opacity from a detailed modelling of the time evolution of the forward shock and supernova photosphere, taking a full account of the non-isotropy of the photon interactions. We discuss the time-dependent gamma-ray TeV emission from Type II-P SNe as a function of the stellar progenitor radius and mass-loss rate, as well as the explosion energy and mass of the ejected material. We evaluate the detectability of the SNe with the next generation of Cherenkov telescopes. We find that, while most extragalactic events may be undetectable, Type II-P SNe exploding in our Galaxy or in the Magellanic Clouds should be detected by gamma-ray observatories such as the upcoming Cherenkov Telescope Array.« less
    Free, publicly-accessible full text available February 18, 2023
  2. Free, publicly-accessible full text available February 1, 2023
  3. null (Ed.)
  4. ABSTRACT Some core-collapse supernovae are likely to be efficient cosmic ray accelerators up to the PeV range, and therefore, to potentially play an important role in the overall Galactic cosmic ray population. The TeV gamma-ray domain can be used to study particle acceleration in the multi-TeV and PeV range. This motivates the study of the detectability of such supernovae by current and future gamma-ray facilities. The gamma-ray emission of core-collapse supernovae strongly depends on the level of the two-photon annihilation process: high-energy gamma-ray photons emitted at the expanding shock wave following the supernova explosion can interact with soft photons frommore »the supernova photosphere through the pair production channel, thereby strongly suppressing the flux of gamma-rays leaving the system. In the case of SN 1993J, whose photospheric and shock-related parameters are well measured, we calculate the temporal evolution of the expected gamma-ray attenuation by accounting for the temporal and geometrical effects. We find the attenuation to be of about 10 orders of magnitude in the first few days after the supernova explosion. The probability of detection of a supernova similar to SN 1993J with the Cherenkov Telescope Array is highest if observations are performed either earlier than 1 d, or later than 10 d after the explosion, when the gamma-ray attenuation decreases to about two orders of magnitude.« less
  5. Abstract The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H α emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 ± 4.4 days is reported, consistent with the period ofmore »317.3 ± 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H α parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.« less
    Free, publicly-accessible full text available December 1, 2022
  6. null (Ed.)