skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Renaudin, Gloria D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sea urchins are basal deuterostomes that share key molecular components of innate immunity with vertebrates. They are a powerful model for the study of innate immune system evolution and function, especially during early development. Here we characterize the morphology and associated molecular markers of larval immune cell types in a newly developed model sea urchin, Lytechinus pictus. We then challenge larvae through infection with an established pathogenic Vibrio and characterize phenotypic and molecular responses. We contrast these to the previously described immune responses of the purple sea urchin Strongylocentrotus purpuratus . The results revealed shared cellular morphologies and homologs of known pigment cell immunocyte markers ( PKS, srcr142 ) but a striking absence of subsets of perforin‐like macpf genes in blastocoelar cell immunocytes. We also identified novel patterning of cells expressing a scavenger receptor cysteine rich (SRCR) gene in the coelomic pouches of the larva (the embryonic stem cell niche). The SRCR signal becomes further enriched in both pouches in response to bacterial infection. Collectively, these results provide a foundation for the study of immune responses in L. pictus. The characterization of the larval immune system of this rapidly developing and genetically enabled sea urchin species will facilitate more sophisticated studies of innate immunity and the crosstalk between the immune system and development. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026