Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This data release contains two debris-flow inventories summarizing observations from burned and unburned areas in the western Cascade Range of Oregon (OR). The burned inventory focuses on debris flows that occurred during the first two years after the 2020 Archie Creek, Holiday Farm, Beachie Creek/Lionshead, and Riverside fires (OR_field_observations.csv). The unburned inventory (1995-2022) focuses on debris flows in the same areas (excluding the Riverside Fire). The inventories are derived from field observations (OR_field_observations.csv) and aerial imagery (OR_imagery_observations.csv). They include mapped debris-flow initiation locations, descriptions of the inferred initiation process, other notable site characteristics, and rainfall data. Locations of debris flows observed after wildfires are also linked to USGS postfire debris-flow hazard assessments (USGS, 2022; Staley and others, 2017; Thomas and others 2023). Rainfall characteristics for each debris flow in the inventory are derived from the closest rainfall gage to an observed debris flow (gage_locations.csv). Peak rainfall rates during the known time window of debris-flow initiation are reported for durations of 15 minutes, 30 minutes, 60 minutes, 12 hours, 24 hours, 36 hours, and 48 hours. More detailed explanations of the headers for each of these csv files can be found within the README_csvname.txt file. References: Landslide Hazards Program. (n.d.). Emergency assessment of post-fire debris-flow hazards. U.S. Geological Survey. https://landslides.usgs.gov/hazards/postfire_debrisflow Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M., 2017, Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278, 149–162. https://doi.org/10.1016/j.geomorph.2016.10.019 Thomas, M. A., Kean, J. W., McCoy, S. W., Lindsay, D. N., Kostelnik, J., Cavagnaro, D. B., Rengers, F. K., East, A. E., Schwartz, J. Y., Smith, D. P., and Collins, B. D., 2023, Postfire hydrologic response along the Central California (USA) coast: insights for the emergency assessment of postfire debris-flow hazards. Landslides, 20, 2421-2436. https://doi.org/10.1007/s10346-023-02106-7more » « less
-
Abstract Debris flows pose a significant hazard to communities in mountainous areas, and there is a continued need for methods to delineate hazard zones associated with debris-flow inundation. In certain situations, such as scenarios following wildfire, where there could be an abrupt increase in the likelihood and size of debris flows that necessitates a rapid hazard assessment, the computational demands of inundation models play a role in their utility. The inability to efficiently determine the downstream effects of anticipated debris-flow events remains a critical gap in our ability to understand, mitigate, and assess debris-flow hazards. To better understand the downstream effects of debris flows, we introduce a computationally efficient, reduced-complexity inundation model, which we refer to as the Progressive Debris-Flow routing and inundation model (ProDF). We calibrate ProDF against mapped inundation from five watersheds near Montecito, CA, that produced debris flows shortly after the 2017 Thomas Fire. ProDF reproduced 70% of mapped deposits across a 40 km 2 study area. While this study focuses on a series of post-wildfire debris flows, ProDF is not limited to simulating debris-flow inundation following wildfire and could be applied to any scenario where it is possible to estimate a debris-flow volume. However, given its ability to reproduce mapped debris-flow deposits downstream of the 2017 Thomas Fire burn scar, and the modest run time associated with a simulation over this 40 km 2 study area, results suggest ProDF may be particularly promising for post-wildfire hazard assessment applications.more » « less
An official website of the United States government
