Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundLeaf economics theory holds that physiological constraints to photosynthesis have a role in the coordinated evolution of multiple leaf traits, an idea that can be extended to carnivorous plants occupying a particular trait space that is constrained by key costs and benefits. Pitcher traps are modified leaves that may face steep photosynthetic costs: a high-volume, three-dimensional tubular structure may be less efficient than a flat lamina. While past research has investigated the photosynthetic costs of pitchers, the exact suite of constraints shaping pitcher trait variation remain under-explored, including constraints to carnivorous function. ScopeIn this review, we describe various constraints arising from the dual photosynthetic and carnivorous functions of pitchers arising from developmental, functional, budgetary and environmental factors. In addition, we identify the data required to establish the leaf economics spectrum (LES) for carnivorous pitcher plants (CPPs), and – owing to the multifunctional roles of pitcher leaves – discuss difficulties in placing pitchers onto existing frameworks. ConclusionBecause pitcher traps serve multiple functions, both photosynthesis and nutrient acquisition (carnivory), they are difficult to place in the context of the LES, especially in light of a current lack of trait data. We describe a spectrum across the independent CPP lineages in approaches to balancing carnivory–photosynthesis tradeoffs. Future efforts to collect relevant data can clarify the forces that shape observed pitcher trait variation, and increase understanding of principles that may be ultimately generalized to other plants.more » « lessFree, publicly-accessible full text available April 12, 2026
-
Crous, Kristine (Ed.)Abstract Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant’s biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane—that is, the outermost surface of the leaf—varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions.more » « less
-
Abstract To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.more » « less
An official website of the United States government
