skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Renshaw, Carl_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The combination of thinning ice, larger waves, and damage due to diurnal thermal cycling motivate the need to better understand the impact of flexing under the action of oceanic waves on the strength of thermally cracked ice. To that end, new experiments were performed on freshwater, lab‐grown ice and first‐year natural sea ice. Both materials were cracked by thermal shocking and then subsequently cyclically flexed. Initially, the thermal cracks weakened both materials. When the cracked ice of either origin was cyclically flexed under fully reversed loading, its flexural strength, initially reduced by the stress‐concentrating action of the cracks, recovered to the strength of non‐cracked, non‐flexed ice. When the cracked ice was cyclically flexed non‐reversely, its strength recovered only partially. During reversed cyclic flexing, the cracked region experienced alternately compressive and tensile stresses. We suggest compression resulted in contact of opposing crack faces followed by sintering leading to strength recovery. During non‐reversed cyclic flexing, contact and sintering were reduced and ice strength did not fully recover. The tendency for cracks to heal during cyclic flexing may lessen their threat to the structural integrity of an ice cover.

     
    more » « less
  2. Abstract

    Uncertainty attribution in water supply forecasting is crucial to improve forecast skill and increase confidence in seasonal water management planning. We develop a framework to quantify fractional forecast uncertainty and partition it between (1) snowpack quantification methods, (2) variability in post‐forecast precipitation, and (3) runoff model errors. We demonstrate the uncertainty framework with statistical runoff models in the upper Tuolumne and Merced River basins (California, USA) using snow observations at two endmember spatial resolutions: a simple snow pillow index and full‐catchment snow water equivalent (SWE) maps at 50 m resolution from the Airborne Snow Observatories. Bayesian forecast simulations demonstrate a nonlinear decrease in the skill of statistical water supply forecasts during warm snow droughts, when a low fraction of winter precipitation remains as SWE. Forecast skill similarly decreases during dry snow droughts, when winter precipitation is low. During a shift away from snow‐dominance, the uncertainty of forecasts using snow pillow data increases about 1.9 times faster than analogous forecasts using full‐catchment SWE maps in the study area. Replacing the snow pillow index with full‐catchment SWE data reduces statistical forecast uncertainty by 39% on average across all tested climate conditions. Attributing water supply forecast uncertainty to reducible error sources reveals opportunities to improve forecast reliability in a warmer future climate.

     
    more » « less
  3. Abstract

    The structural integrity of the arctic sea ice cover is under threat owing largely to the combination of thinning and larger waves. Another contributor may be thermal cracking. In concentrating stress, thermal cracks may weaken the cover. Of interest, therefore, is the strength of thermally damaged ice. To that end, new experiments were performed on sea ice and on lab‐grown saline and salt‐free ice that had been cracked by thermal shocking. As expected, the cracks weakened the materials in accord with fracture mechanics. However, within tens to hundreds of seconds of shocking, the strength recovered completely, for the ice had healed. Healing is attributed to thermally activated sintering related to surface diffusion, assisted possibly by the formation of a quasi‐liquid layer on crack faces. Whether behavior on the small scale is indicative of behavior on the large scale remains to be determined.

     
    more » « less