Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process‐based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests. The limited representation of herbaceous communities within models arises from two important knowledge gaps: first, our empirical understanding of the principles governing herbaceous vegetation dynamics is either incomplete or does not provide mechanistic information necessary to drive herbaceous community processes with models; second, current model structure and parameterization of grass and other herbaceous plant functional types limits the ability of models to predict outcomes of competition and growth for herbaceous vegetation. In this review, we provide direction for addressing these gaps by: (1) presenting a brief history of how vegetation dynamics have been developed and incorporated into earth system models, (2) reporting on a model simulation activity to evaluate current model capability to represent herbaceous vegetation dynamics and ecosystem function, and (3) detailing several ecological properties and phenomena that should be a focus for both empiricists and modelers to improve representation of herbaceous vegetation in models. Together, empiricists and modelers can improve representation of herbaceous ecosystem processes within models. In so doing, we will greatly enhance our ability to forecast future states of the earth system, which is of high importance given the rapid rate of environmental change on our planet.more » « less
-
Abstract AimClimate and disturbance alter forest dynamics, from individual trees to biomes and from years to millennia, leaving legacies that vary with local, meso‐ and macroscales. Motivated by recent insights in temperate forests, we argue that temporal and spatial extents equivalent to that of the underlying drivers are necessary to characterize forest dynamics across scales. We focus specifically on characterizing mesoscale forest dynamics because they bridge fine‐scale (local) processes and the continental scale (macrosystems) in ways that are highly relevant for climate change science and ecosystem management. We revisit ecological concepts related to spatial and temporal scales and discuss approaches to gain a better understanding of climate–forest dynamics across scales. LocationEastern USA. Time periodLast century to present. Major taxa studiedTemperate broadleaf forests. MethodsWe review regional literature of past tree mortality studies associated with climate to identify mesoscale climate‐driven disturbance events. Using a dynamic vegetation model, we then simulate how these forests respond to a typical climate‐driven disturbance. ResultsBy identifying compound disturbance events from both a literature review and simulation modelling, we find that synchronous patterns of drought‐driven mortality at mesoscales have been overlooked within these forests. Main conclusionsAs ecologists, land managers and policy‐makers consider the intertwined drivers of climate and disturbance, a focus on spatio‐temporal scales equivalent to those of the drivers will provide insight into long‐term forest change, such as drought impacts. Spatially extensive studies should also have a long temporal scale to provide insight into pathways for forest change, evaluate predictions from dynamic forest models and inform development of global vegetation models. We recommend integrating data collected from spatially well‐replicated networks (e.g., archaeological, historical or palaeoecological data), consisting of centuries‐long, high‐resolution records, with models to characterize better the mesoscale response of forests to climate change in the past and in the future.more » « less