skip to main content


Search for: All records

Creators/Authors contains: "Restuccia, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 12, 2025
  2. Free, publicly-accessible full text available May 13, 2025
  3. The extremely high data rates provided by communications in the millimeter-length (mmWave) frequency bands can help address the unprecedented demands of next-generation wireless communications. However, atmospheric attenuation and high propagation loss severely limit the coverage of mmWave networks. To overcome these challenges, multi-input-multi-output (MIMO) provides beamforming capabilities and high-gain steer- able antennas to expand communication coverage at mmWave frequencies. The main contribution of this paper is the per- formance evaluation of mmWave communications on top of the recently released NR standard for 5G cellular networks. Furthermore, we compare the performance of NR with the 4G long-term evolution (LTE) standard on a highly realistic campus environment. We consider physical layer constraints such as transmit power, ambient noise, receiver noise figure, and practical antenna gain in both cases, and examine bitrate and area coverage as the criteria to benchmark the performance. We also show the impact of MIMO technology to improve the performance of the 5G NR cellular network. Our evaluation demonstrates that 5G NR provides on average 6.7 times bitrate improvement without remarkable coverage degradation. 
    more » « less