skip to main content

Search for: All records

Creators/Authors contains: "Reusch, Simeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Optical surveys have become increasingly adept at identifying candidate tidal disruption events (TDEs) in large numbers, but classifying these generally requires extensive spectroscopic resources. Here we presenttdescore, a simple binary photometric classifier that is trained using a systematic census of ∼3000 nuclear transients from the Zwicky Transient Facility (ZTF). The sample is highly imbalanced, with TDEs representing ∼2% of the total.tdescoreis nonetheless able to reject non-TDEs with 99.6% accuracy, yielding a sample of probable TDEs with recall of 77.5% for a precision of 80.2%.tdescoreis thus substantially better than any available TDE photometric classifier scheme in the literature, with performance not far from spectroscopy as a method for classifying ZTF nuclear transients, despite relying solely on ZTF data and multiwavelength catalog cross matching. In a novel extension, we use “Shapley additive explanations” to provide a human-readable justification for each individualtdescoreclassification, enabling users to understand and form opinions about the underlying classifier reasoning.tdescorecan serve as a model for photometric identification of TDEs with time-domain surveys, such as the upcoming Rubin observatory.

    more » « less

    The origin of cosmic high-energy neutrinos remains largely unexplained. For high-energy neutrino alerts from IceCube, a coincidence with time-variable emission has been seen for three different types of accreting black holes: (1) a gamma-ray flare from a blazar (TXS 0506+056), (2) an optical transient following a stellar tidal disruption event (TDE; AT2019dsg), and (3) an optical outburst from an active galactic nucleus (AGN; AT2019fdr). For the latter two sources, infrared follow-up observations revealed a powerful reverberation signal due to dust heated by the flare. This discovery motivates a systematic study of neutrino emission from all supermassive black hole with similar dust echoes. Because dust reprocessing is agnostic to the origin of the outburst, our work unifies TDEs and high-amplitude flares from AGN into a population that we dub accretion flares. Besides the two known events, we uncover a third flare that is coincident with a PeV-scale neutrino (AT2019aalc). Based solely on the optical and infrared properties, we estimate a significance of 3.6σ for this association of high-energy neutrinos with three accretion flares. Our results imply that at least ∼10 per cent of the IceCube high-energy neutrino alerts could be due to accretion flares. This is surprising because the sum of the fluence of these flares is at least three orders of magnitude lower compared to the total fluence of normal AGN. It thus appears that the efficiency of high-energy neutrino production in accretion flares is increased compared to non-flaring AGN. We speculate that this can be explained by the high Eddington ratio of the flares.

    more » « less

    The Zwicky Transient Facility (ZTF) performs a systematic neutrino follow-up programme, searching for optical counterparts to high-energy neutrinos with dedicated Target-of-Opportunity (ToO) observations. Since first light in March 2018, ZTF has taken prompt observations for 24 high-quality neutrino alerts from the IceCube Neutrino Observatory, with a median latency of 12.2 h from initial neutrino detection. From two of these campaigns, we have already reported tidal disruption event (TDE) AT 2019dsg and likely TDE AT 2019fdr as probable counterparts, suggesting that TDEs contribute >7.8 per cent of the astrophysical neutrino flux. We here present the full results of our programme through to December 2021. No additional candidate neutrino sources were identified by our programme, allowing us to place the first constraints on the underlying optical luminosity function of astrophysical neutrino sources. Transients with optical absolutes magnitudes brighter that −21 can contribute no more than 87 per cent of the total, while transients brighter than −22 can contribute no more than 58 per cent of the total, neglecting the effect of extinction and assuming they follow the star formation rate. These are the first observational constraints on the neutrino emission of bright populations such as superluminous supernovae. None of the neutrinos were coincident with bright optical AGN flares comparable to that observed for TXS 0506+056/IC170922A, with such optical blazar flares producing no more than 26 per cent of the total neutrino flux. We highlight the outlook for electromagnetic neutrino follow-up programmes, including the expected potential for the Rubin Observatory.

    more » « less
  4. Abstract The Fermi Gamma-ray Burst Monitor (GBM) triggers on-board in response to ∼40 short gamma-ray bursts (SGRBs) per year; however, their large localization regions have made the search for optical counterparts a challenging endeavour. We have developed and executed an extensive program with the wide field of view of the Zwicky Transient Facility (ZTF) camera, mounted on the Palomar 48 inch Oschin telescope (P48), to perform target-of-opportunity (ToO) observations on 10 Fermi-GBM SGRBs during 2018 and 2020–2021. Bridging the large sky areas with small field-of-view optical telescopes in order to track the evolution of potential candidates, we look for the elusive SGRB afterglows and kilonovae (KNe) associated with these high-energy events. No counterpart has yet been found, even though more than 10 ground-based telescopes, part of the Global Relay of Observatories Watching Transients Happen (GROWTH) network, have taken part in these efforts. The candidate selection procedure and the follow-up strategy have shown that ZTF is an efficient instrument for searching for poorly localized SGRBs, retrieving a reasonable number of candidates to follow up and showing promising capabilities as the community approaches the multi-messenger era. Based on the median limiting magnitude of ZTF, our searches would have been able to retrieve a GW170817-like event up to ∼200 Mpc and SGRB afterglows to z = 0.16 or 0.4, depending on the assumed underlying energy model. Future ToOs will expand the horizon to z = 0.2 and 0.7, respectively. 
    more » « less
  5. Free, publicly-accessible full text available February 28, 2025
  6. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets. 
    more » « less
  7. Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.

    more » « less
    Free, publicly-accessible full text available January 1, 2025
  8. null (Ed.)
  9. null (Ed.)