Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent advances in continuum embedding models have enabled the incorporation of solvent and electrolyte effects into density functional theory (DFT) simulations of material surfaces, significantly benefiting electrochemistry, catalysis, and other applications. To extend the simulation of diverse systems and properties, the implementation of continuum embedding models into the Environ library adopts a modular programming paradigm, offering a flexible interface for communication with various DFT programs. The speed and scalability of the current implementation rely on a smooth definition of the key physical properties of the atomistic system, in particular, of its electronic density. This has hindered the coupling of Environ with all-electron simulation packages, as the sharp electron density peaks near atomic nuclei are difficult to represent on regular grids. In this work, we introduce a novel smoothing scheme that transforms atom-centered electron densities into a regular grid representation while preserving the accuracy of electrostatic calculations. This approach enables a minimal and generic interface, facilitating seamless interoperability between Environ and all-electron DFT programs. We demonstrate this development through the coupling of Environ with the FHI-aims package and present benchmark simulations that validate the proposed method.more » « lessFree, publicly-accessible full text available October 28, 2026
-
Abstract A new class of macrocyclic angle‐strained alkynes whose size and reactivity can be precisely tuned by modular organic synthesis is disclosed. Detailed analysis of the size‐dependent structural and electronic properties provides evidence for considerable distortion of the alkyne units incorporated into the cycloparaphenylene (CPP)‐derived macrocycles. The remarkable increase of the alkyne reactivity with decreasing macrocycle size in [2+2]cycloaddition–retrocyclization was investigated by joint experimental and theoretical studies and the thermodynamic and kinetic parameters that govern this reaction were unraveled. Additionally, even the largest, least strained macrocycle in this series was found to undergo strain‐promoted azide–alkyne cycloaddition (SPAAC) efficiently under mild conditions, thereby paving the way to the application of alkyne‐containing CPPs as fluorescent “clickable” macrocyclic architectures.more » « less
An official website of the United States government
