skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Reynolds, John R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapid progression of the COVID‐19 pandemic revealed an inability to meet increased demand for N95 respirators. These respirators are designed to be used once and disposed, but throughout the pandemic, there was a need for their decontamination and reuse. This research investigates the effect of various decontamination methods on the chemical and mechanical properties of N95 mask straps made of natural rubber to explore how these straps change after decontamination and what materials characterization techniques are well‐suited to evaluate these changes. Using results from ozone decontamination, tensile testing of mask strap assemblies is identified as the most reliable way to quantify changes in strap properties with decontamination and reuse when compared to other analytical techniques. Additionally, visible strap degradation often precedes both strap failure and material property changes and can be a reasonable indicator to discontinue use. Aside from ozone, decontamination with other methods such as heat and UV light appears to be less damaging to the tested materials. Beyond the specific results presented, this study provides insight on testing strategies that can be employed to move forward with evaluating new materials and decontamination methods for use in future pandemics or in more resource‐limited regions. 
    more » « less
    Free, publicly-accessible full text available January 4, 2026
  2. Free, publicly-accessible full text available April 30, 2025
  3. Printable feedstocks that can produce lightweight, robust, and ductile structures with tunable and switchable conductivity are of considerable interest for numerous application spaces. Combining the specific properties of commodity thermoplastics with the unique electrical and redox properties of conducting polymers (CPs) presents new opportunities for the field of printed (bio)electronics. Here, we report on the direct ink write (DIW) printing of ink formulations based on polyaniline-dinonylnaphthalene sulfonic acid (PANI-DNNSA), which has been synthesized in bulk quantities (∼400 g). DNNSA imparts solubility to PANI up to 50 mg mL −1 , which allows the use of various additives to tune the rheological behavior of the inks without significantly compromising the electrical properties of the printed structures, which reach conductivities in the range of <10 −7 –10 0 S cm −1 as a function of ink formulation and post treatment used. Fumed silica (FS) and ultra-high molecular weight polystyrene (UHMW-PS) additives are leveraged to endow printability and shape retention to inks, as well as to compare the use of traditional rheological modifiers with commodity thermoplastics on CP feedstocks for tailored DIW printing. We show that the incorporation of UHMW-PS into these ink formulations is critical for obtaining high crack resistance in printed structures. This work serves as a guide for future ink designs of CPs with commodity thermoplastics and their subsequent DIW printing to yield conductive architectures and devices for various applications. 
    more » « less
  4. In this short review, we provide an overview of our efforts in developing a family of anodically coloring electrochromic (EC) molecules that are fully transparent and colorless in the charge neutral state, and that can rapidly switch to a vibrantly colored state upon oxidation. We employ molecules with reduced conjugation lengths to center the neutral state absorption of the electrochrome in the ultraviolet, as desired for highly transparent and colorless materials. Oxidation creates radical cations that absorb light in the visible and near infrared regions of the electromagnetic spectrum, thus providing a host of accessible colors. Combining a density functional theory (DFT) computational approach fed back to the synthetic effort, target molecules are proposed, synthesized and studied, directing us to develop a complete color palette based on these high contrast ACE molecules. Utilizing pendant phosphonic acid binding substituents in concert with high surface area mesoporous indium tin oxide (ITO) electrodes, the electrochromes can be distributed throughout the oxide film, bringing high extent of light absorption and color density. 
    more » « less