Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Two project-based learning approaches were implemented in a 100-level information literacy class in the Mechanical Engineering program at a mid-Atlantic university. One approach, the treatment group, partnered engineering students with education students to develop and deliver engineering lessons that guide elementary school students through the engineering design process. In the second approach, the comparison group, engineering students were partnered with their engineering classmates to work on an engineering problem using the engineering design process. The two projects were designed to have similar durations and course point values. For both projects, teams were formed, and peer evaluations were completed, using the Comprehensive Assessment of Team Member Effectiveness (CATME) survey. This study examined how the two project-based learning approaches affected students' teamwork effectiveness. Data was collected from undergraduate engineering students assigned to groups in the comparison and treatment conditions from Fall 2019 to Fall 2022. Data was collected electronically through the CATME teammate evaluations and project reflections (treatment, n = 137; comparison, n = 112). CATME uses a series of questions assessed on a 5-point Likert scale. Quantitative analysis using Analysis of Variance (ANOVA) and Covariance (ANCOVA) showed that engineering students in the treatment group expected more quality, were more satisfied, and had more task commitment than engineering students working within their discipline. However, no statistically significant differences were observed for teamwork effectiveness categories such as contribution to the team’s work, interaction with teammates, keeping the team on track, and having relevant knowledge, skills, and abilities. This result suggests that engineering students who worked in interdisciplinary teams with an authentic audience (i.e., children) perceived higher quality in their projects and had higher levels of commitment to the task than their peers in the comparison group. A thematic analysis of the written reflections was conducted to further explain the results obtained for the three categories: expecting quality, satisfaction, and task commitment. The thematic analysis revealed that the treatment, or interdisciplinary, groups exhibited considerably more positive reflections than their comparison peers regarding the project in all three categories, supporting results obtained quantitatively.more » « lessFree, publicly-accessible full text available June 23, 2025
-
Seventy-three students who enrolled in a senior-year level fluid mechanics course during spring semesters from 2019-2022 were asked about their perceptions on the impact in their professional preparation of a semester-long multidisciplinary service-learning assignment. This paper evaluates their current perceived impact of the assignment (long-term impact) and whether it might have changed from when they took the course (short-term impact). A survey was sent to all former students who went through the course and participated in the assignment, with a 61.64% return rate. The survey included questions about how well they remembered the assignment (some of the students were involved in it 4 years prior to completing this survey), the relevance of the project in terms of their professional preparation, how it impacted their collaboration skills, and whether their involvement affected their interest in participating in engineering outreach activities. To determine how their perceived impact of the project on their professional preparation has changed from when they took the class to now when they are working professionals, we compare their recent responses to the responses in reflections they completed while taking the course. The information gathered in the survey also provides a means to evaluate the effectiveness of the project and identify areas for improvement, which has implications for how similar projects might be designed and enacted in the future.more » « lessFree, publicly-accessible full text available June 23, 2025
-
Engineering is becoming increasingly cross-disciplinary, requiring students to develop skills in multiple engineering disciplines (e.g., mechanical engineering students having to learn the basics of electronics, instrumentation, and coding) and interprofessional skills to integrate perspectives from people outside their field. In the workplace, engineering teams are frequently multidisciplinary, and often, people from outside of engineering are part of the team that brings a product to market. Additionally, teams are often diverse in age, race, gender, and in other areas. Teams that creatively utilize the contrasting perspectives and ideas arising from these differences can positively affect team performance and generate solutions effective for a broader range of users. These trends suggest that engineering education can benefit from having engineering students work on team projects that involve a blend of cross-disciplinary and mixed-aged collaborations. An NSF-funded project set out to explore this idea by partnering undergraduate engineering students enrolled in a 300-level electromechanical systems course with preservice teachers enrolled in a 400-level educational technology course to plan and deliver robotics lessons to fifth graders at a local school. Working in small teams, students designed, built, and coded bio-inspired robots. The collaborative activities included: (1) training with Hummingbird Bit hardware (Birdbrain Technologies, Pittsburgh, PA) (e.g. sensors, servo motors) and coding platform, (2) preparing robotics lessons for fifth graders that explained the engineering design process, and (3) guiding the fifth graders in the design of their robots. Additionally, each engineering student designed a robot following the theme developed with their education student and fifth-grade partners.more » « lessFree, publicly-accessible full text available June 23, 2025
-
National and many state standards require elementary teachers to teach engineering in their classrooms. However, incorporating engineering into elementary engineering classrooms has not been a standard practice, thus emphasizing the need for teachers to be provided with training, resources, and support for the vision of instruction described in the standards to become a reality. Administrators are responsible for making decisions regarding teacher training and support. In response, we explored the perceptions of division and building-level administrators throughout Virginia regarding the current state of elementary engineering education and what they perceive as barriers to their teachers engaging students in lessons that incorporate engineering practices. Our data comes from 11 questions from a multiple-choice and open-ended response survey, which was analyzed using a mixed-method approach. Findings describe incoherence between what administrators perceive as the current state of engineering education, the barriers to teachers engaging their students in engineering, and what supports are being provided to teachers. These findings have implications for professional development design and implementation.more » « lessFree, publicly-accessible full text available March 17, 2025
-
Preservice teachers (PSTs) in an educational foundations course were tasked with leading elementary students in an engineering design challenge. To explore different approaches for helping the PSTs develop competence in engineering education, two implementation methods were tested. In Spring 2022, PSTs collaborated with undergraduate engineering students to develop carnival-themed design challenge lessons. In Fall 2022, PSTs worked with their PST classmates to teach a professionally prepared engineering lesson focused on designing plastic filters. PSTs’ knowledge of engineering and engineering pedagogy were compared across the two semesters using an exploratory approach. Both groups showed increases in engineering knowledge and engineering pedagogical knowledge. Item-level differences suggest unique benefits to each approach providing insight for teacher educators designing interventions to prepare PSTs to integrate engineering into elementary education.more » « lessFree, publicly-accessible full text available March 25, 2025
-
Reflection allows teachers to evaluate their past instruction and make decisions to guide their future practice (i.e., Killion & Todnem, 1991; Moore-Russo & Wilsey, 2014). The literature on teacher sensemaking suggests that engaging in reflection might support sensemaking about changes to teachers’ practice (e.g., Marco-Bujosa et al., 2017; Senzen-Barrie et al., 2020). However, prior research has not connected teachers’ engagement in reflection to their sensemaking. By using video data of PD, we analyzed the category of reflection (Moore-Russo & Wilsey, 2014) teachers participated in, the process of sensemaking (Robertson & Richards, 2017), as well as what teachers were sensemaking about in relation to the PD’s design. Our analysis indicated that teachers typically reflected by sharing their individual viewpoints and used the process of negotiation to consider how to facilitate productive talk. Additionally, different features designed as a part of the PD (i.e., general discussion, redesign, video) supported teachers to participate in different types of reflection and processes of sensemaking. The findings from this study have implications for teacher PD design features and their role in facilitating reflection and promoting sensemaking.more » « less
-
Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they perceived collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction.more » « less
-
As part of a larger study focused on supporting high school biology teachers' use of productive science talk, this study compares the use of two different observation protocols, the RTOP and the IQA-SOR. Reviewing a year-long data set of video observations collected from classrooms of teachers participating in the larger professional development study, the two validated instruments produced significantly correlated scores of different scales based on the unique structure of each tool. We posit this demonstrates that both instruments can be useful for analyzing classroom instruction intended to emphasize productive science talk. However, the instruments do possess unique structural and theoretical qualities that warrant this study to understand the insights afforded by each. The similarities and differences emerging from each are explored in the presentation and how they impact the analyses. These considerations can be helpful for scholars who research in-service teacher learning as classroom implementation and impact on student learning activities are general outcomes that most professional development research endeavors to explore. Further, considerations of what a particular observation protocols’ foci include will be necessary so that continued research on teacher learning works to make science learning through discourse accessible to all learners.more » « less
-
Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they identified collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction.more » « less
-
Krell, M. ; Vorholzer, A. ; Nehring, A. (Ed.)Assessments of scientific reasoning that capture the intertwining aspects of conceptual, procedural and epistemic knowledge are often associated with intensive qualitative analyses of student responses to open-ended questions, work products, interviews, discourse and classroom observations. While such analyses provide evaluations of students’ reasoning skills, they are not scalable. The purpose of this study is to develop a three-tiered multiple-choice assessment to measure students’ reasoning about biological phenomena and to understand the affordances and limitations of such an assessment. To validate the assessment and to understand what the assessment measures, qualitative and quantitative data were collected and analyzed, including read-aloud, focus group interviews and analysis of large sample data sets. These data served to validate our three-tiered assessment called the Assessment of Biological Reasoning (ABR) consisting of 10 question sets focused on core biological concepts. Further examination of our data suggests that students’ reasoning is intertwined in such a way that procedural and epistemic knowledge is reliant on and given meaning by conceptual knowledge, an idea that pushes against the conceptualization that the latter forms of knowledge construction are more broadly applicable across disciplines.more » « less