Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a comprehensive recalibration of narrowband/medium-band and broadband photometry from the Southern Photometric Local Universe Survey (S-PLUS) by leveraging two approaches: an improved Gaia XP synthetic photometry (XPSP) method with corrected Gaia XP spectra, and the stellar color regression (SCR) method with corrected Gaia Early Data Release 3 photometric data and spectroscopic data from LAMOST Data Release 7. Through the use of millions of stars as standards per band, we demonstrate the existence of position-dependent systematic errors, up to 23 mmag for the main survey region, in the S-PLUS iDR4 photometric data. A comparison between the XPSP and SCR methods reveals minor differences in zero-point offsets, typically within the range of 1–6 mmag, indicating the accuracy of the recalibration, and a twofold to threefold improvement in the zero-point precision. During this process, we also verify and correct for systematic errors related to CCD position. The corrected S-PLUS iDR4 photometric data will provide a solid data foundation for conducting scientific research that relies on high-precision calibration. Our results underscore the power of the XPSP method in combination with the SCR method, showcasing their effectiveness in enhancing calibration precision for wide-field surveys when combined with Gaia photometry and XP spectra, to be applied for other S-PLUS subsurveys.more » « less
-
Abstract We presentSLIDE, a pipeline that enables transient discovery in data from the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), using archival images from the Dark Energy Camera as templates for difference imaging. We apply this pipeline to the recently released Data Preview 1 (DP1; the first public release of Rubin commissioning data) and search for transients in the resulting difference images. The image subtraction, photometry extraction, and transient detection are all performed on the Rubin Science Platform. We demonstrate thatSLIDEeffectively extracts clean photometry by circumventing poor or missing LSST templates. We identified 29 previously unreported transients, 12 of which would not have been detected based on the DP1DiaObjectcatalog.SLIDEwill be especially useful for transient analysis in the early years of LSST, when template coverage will be largely incomplete or when templates may be contaminated by transients present at the time of acquisition. We present multiband light curves for a sample of known transients, along with new transient candidates identified through our search. Finally, we discuss the prospects of applying this pipeline during the main LSST survey. Our pipeline is broadly applicable and will support studies of all transients with slowly evolving phases.more » « lessFree, publicly-accessible full text available November 11, 2026
-
Context. This paper presents the first public data release of the S-PLUS Ultra-Short Survey (USS), a photometric survey with short exposure times, covering approximately 9300 deg2of the Southern sky. The USS utilizes the Javalambre 12-band magnitude system, including narrow, medium, and broad-band filters targeting prominent stellar spectral features. The primary objective of the USS is to identify bright, extremely metal-poor (EMP; [Fe/H] ≤ −3) and ultra-metal-poor (UMP; [Fe/H] ≤ −4) stars for further analysis using medium- and high-resolution spectroscopy. Aims. This paper provides an overview of the survey observations, calibration method, data quality, and data products. Additionally, it presents the selection of EMP and UMP candidates. Methods. The data from the USS were reduced and calibrated using the same methods as presented in the S-PLUS DR2. An additional step was introduced, accounting for the offset between the observed magnitudes off the USS and the predicted magnitudes from the very low-resolution Gaia XP spectra. Results. This first release contains data for 163 observed fields totaling ~324 deg2along the Celestial Equator. The magnitudes obtained from the USS are well-calibrated, showing a difference of ~15 mmag compared to the predicted magnitudes by the GaiaXPy toolkit. By combining colors and magnitudes, 140 candidates for EMP or UMP have been identified for follow-up studies. Conclusions. The S-PLUS USS DR1 is an important milestone in the search for bright metal-poor stars, with magnitudes in the range 10 <r ≤14. The USS is an ongoing survey; in the near future, it will provide many more bright metal-poor candidate stars for spectroscopic follow-up.more » « less
-
Betancourt, Andrea (Ed.)Abstract Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and nearby sites. Selective sweeps come in different forms, and depending on the initial and final frequencies of a favored variant, very different patterns of genetic variation may be produced. If local selection favors an existing variant that had already recombined onto multiple genetic backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to detect using a typical windowed genome scan, even if the targeted variant becomes highly differentiated. We, therefore, used a simulation approach to investigate the power of SNP-level FST (specifically, the maximum SNP FST value within a window, or FST_MaxSNP) to detect diverse scenarios of local adaptation, and compared it against whole-window FST and the Comparative Haplotype Identity statistic. We found that FST_MaxSNP had superior power to detect complete or mostly complete soft sweeps, but lesser power than full-window statistics to detect partial hard sweeps. Nonetheless, the power of FST_MaxSNP depended highly on sample size, and confident outliers depend on robust precautions and quality control. To investigate the relative enrichment of FST_MaxSNP outliers from real data, we applied the two FST statistics to a panel of Drosophila melanogaster populations. We found that FST_MaxSNP had a genome-wide enrichment of outliers compared with demographic expectations, and though it yielded a lesser enrichment than window FST, it detected mostly unique outlier genes and functional categories. Our results suggest that FST_MaxSNP is highly complementary to typical window-based approaches for detecting local adaptation, and merits inclusion in future genome scans and methodologies.more » « less
-
Abstract Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey’s massive data throughput will be transformational for many other astrophysics domains and Rubin’s data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.more » « less
An official website of the United States government
