skip to main content

Search for: All records

Creators/Authors contains: "Rich, Thomas C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Systems engineering captures the desires and needs of the customer to conceptualize a system from the overall goal down to the small details prior to any physical development. While many systems projects tend to be large and complicated (i.e., cloud-based infrastructure, long-term space travel shuttles, missile defense systems), systems engineering can also be applied to smaller, complex systems. Here, the system of interest is the endoscope, a standard biomedical screening device used in laparoscopic surgery, screening of upper and lower gastrointestinal tracts, and inspection of the upper airway. Often, endoscopic inspection is used to identify pre-cancerous and cancerous tissues, and hence, a requirement for endoscopic systems is the ability to provide images with high contrast between areas of normal tissue and neoplasia (early-stage abnormal tissue growth). For this manuscript, the endoscope was reviewed for all the technological advancements thus far to theorize what the next version of the system could be in order to provide improved detection capabilities. Endoscopic technology was decomposed into categories, using systems architecture and systems thinking, to visualize the improvements throughout the system’s lifetime from the original to current state-of-the-art. Results from this review were used to identify trends in subsystems and components to estimate the theoretical performance maxima for different subsystems as well as areas for further development. The subsystem analysis indicated that future endoscope systems will focus on more complex imaging and higher computational requirements that will provide improved contrast in order to have higher accuracy in optical diagnoses of early, abnormal tissue growth. 
    more » « less
  2. Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunable filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+and other second messenger signaling) and has potential to be translated to clinical imaging platforms.

    more » « less
  3. Brown, Thomas G. ; Wilson, Tony ; Waller, Laura (Ed.)
  4. Leary, James F. ; Tarnok, Attila ; Houston, Jessica P. (Ed.)
  5. Evans, Conor L. ; Chan, Kin Foong (Ed.)
  6. Colorectal cancer is the 3rdleading cancer for incidence and mortality rates. Positive treatment outcomes have been associated with early detection; however, early stage lesions have limited contrast to surrounding mucosa. A potential technology to enhance early stagise detection is hyperspectral imaging (HSI). While HSI technologies have been previously utilized to detect colorectal cancerex vivoor post-operation, they have been difficult to employ in real-time endoscopy scenarios. Here, we describe an LED-based multifurcated light guide and spectral light source that can provide illumination for spectral imaging at frame rates necessary for video-rate endoscopy. We also present an updated light source optical ray-tracing model that resulted in further optimization and provided a ∼10X light transmission increase compared to the initial prototype. Future work will iterate simulation and benchtop testing of the hyperspectral endoscopic system to achieve the goal of video-rate spectral endoscopy.

    more » « less
  7. null (Ed.)
  8. Positive outcomes for colorectal cancer treatment have been linked to early detection. The difficulty in detecting early lesions is the limited contrast with surrounding mucosa and minimal definitive markers to distinguish between hyperplastic and carcinoma lesions. Colorectal cancer is the 3rd leading cancer for incidence and mortality rates which is potentially linked to missed early lesions which allow for increased growth and metastatic potential. One potential technology for early-stage lesion detection is hyperspectral imaging. Traditionally, hyperspectral imaging uses reflectance spectroscopic data to provide a component analysis, per pixel, of an image in fields such as remote sensing, agriculture, food processing and archaeology. This work aims to acquire higher signal-to-noise fluorescence spectroscopic data, harnessing the autofluorescence of tissue, adding a hyperspectral contrast to colorectal cancer detection while maintaining spatial resolution at video-rate speeds. We have previously designed a multi-furcated LED-based spectral light source to prove this concept. Our results demonstrated that the technique is feasible, but the initial prototype has a high light transmission loss (~98%) minimizing spatial resolution and slowing video acquisition. Here, we present updated results in developing an optical ray-tracing model of light source geometries to maximize irradiance throughput for excitation-scanning hyperspectral imaging. Results show combining solid light guide branches have a compounding light loss effect, however, there is potential to minimize light loss through the use of optical claddings. This simulation data will provide the necessary metrics to verify and validate future physical optical components within the hyperspectral endoscopic system for detecting colorectal cancer. 
    more » « less
  9. Fluorescence imaging microscopy has traditionally been used because of the high specificity that is achievable through fluorescence labeling techniques and optical filtering. When combined with spectral imaging technologies, fluorescence microscopy can allow for quantitative identification of multiple fluorescent labels. We are working to develop a new approach for spectral imaging that samples the fluorescence excitation spectrum and may provide increased signal strength. The enhanced signal strength may be used to provide increased spectral sensitivity and spectral, spatial, and temporal sampling capabilities. A proof of concept excitation scanning system has shown over 10-fold increase in signal to noise ratio compared to emission scanning hyperspectral imaging. Traditional hyperspectral imaging fluorescence microscopy methods often require minutes of acquisition time. We are developing a new configuration that utilizes solid state LEDs to combine multiple illumination wavelengths in a 2-mirror assembly to overcome the temporal limitations of traditional hyperspectral imaging. We have previously reported on the theoretical performance of some of the aspects of this system by using optical ray trace modeling. Here, we present results from prototyping and benchtop testing of the system, including assembly, optical characterization, and data collection. This work required the assembly and characterization of a novel excitation scanning hyperspectral microscopy system, containing 12 LEDs ranging from 365- 425 nm, 12 lenses, a spherical mirror, and a flat mirror. This unique approach may reduce the long image acquisition times seen in traditional hyperspectral imaging while maintaining high specificity and sensitivity for multilabel identification and autofluorescence imaging in real time. 
    more » « less
  10. Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While its original applications were in remote sensing, modern uses include agriculture, historical document authentications and medicine. HSI has shown great utility in fluorescence microscopy; however, acquisition speeds have been slow due to light losses associated with spectral filtering. We are currently developing a rapid hyperspectral imaging platform for 5-dimensional imaging (RHIP-5D), a confocal imaging system that will allow users to obtain simultaneous measurements of many fluorescent labels. We have previously reported on optical modeling performance of the system. This previous model investigated geometrical capability of designing a multifaceted mirror imaging system as an initial approach to sample light at many wavelengths. The design utilized light-emitting diodes (LEDs) and a multifaceted mirror array to combine light sources into a liquid light guide (LLG). The computational model was constructed using Monte Carlo optical ray software (TracePro, Lambda Research Corp.). Recent results presented here show transmission has increased up to 9% through parametric optimization of each component. Future work will involve system validation using a prototype engineered based on our optimized model. System requirements will be evaluated to determine if potential design changes are needed to improve the system. We will report on spectral resolution to demonstrate feasibility of the RHIP-5D as a promising solution for overcoming current HSI acquisition speed and sensitivity limitations. 
    more » « less