skip to main content

Search for: All records

Creators/Authors contains: "Richards, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The red hypergiant VY CMa is famous for its very visible record of high-mass-loss events. Recent CO observations with the Atacama Large Millimeter/submillimeter Array (ALMA) revealed three previously unknown large-scale outflows (Singh et al). In this paper, we use the CO maps to investigate the motions of a cluster of four clumps close to the star, not visible in the optical or infrared images. We present their proper motions measured from two epochs of ALMA images and determine the line-of-sight velocities of the gas in emission at the clumps. We estimate their masses and ages, or time since ejection, and conclude that all four were ejected during VY CMa’s active period in the early 20th century. Together with two additional knots observed with the Hubble Space Telescope, VY CMa experienced at least six massive outflows during a 30 yr period, with a total mass lost ≥0.07M. The position–velocity map of the12CO emission reveals previously unnoticed attributes of the older outer ejecta. In a very narrow range of Doppler velocities,12CO absorption and emission causes some of this outer material to be quite opaque. At those frequencies the inner structure is hidden and we see only emission from an extended outer region. This fact produces a conspicuous but illusory dark spot if one attempts to subtract the continuum in a normal way.

    more » « less
  2. Abstract

    TheJ= 2 → 1 transition of CO near 230 GHz and theJ= 3 → 2 line of HCN at 265 GHz have been imaged in the envelope of the red hypergiant star, VY Canis Majoris (VY CMa), using the Atacama Large Millimeter Array (ALMA) with angular resolutions 0.″2–1.″5; single-dish data were added to provide sensitivity up to 30″. These images reveal a far more complex envelope, with previously unseen outflows extending 4″–9″ from the star. These new structures include an arc-like outflow with an angular separation of ∼9″ northeast from the stellar position (“NE Arc”), twin fingerlike features approximately 4″ to the north/northeast (“NE Extension”), and a roughly spherical region observed ∼7″ E of the star (“E Bubble”). The NE Arc appears to be decelerating from base (VLSR∼ 7 km s−1) to tip (VLSR∼ 18 km s−1), while the NE Extension is blueshifted withVLSR∼ −7 km s−1. Among the new features, HCN is only detected in the NE Arc. In addition, known structures Arc 1, Arc 2, and NW Arc, as well as other features closer to the star, are closely replicated in CO, suggesting that the gas and dust are well mixed. The CO spectra are consistent with the kinematic picture of VY CMa derived from HST data. Arc 2, however, has added complexity. Preliminary results from CO suggest12C/13C ∼ 22–38 across the envelope. The additional presence of at least three major episodic mass ejection events significantly broadens the current perspective of the envelope structure and mass-loss history of VY CMa.

    more » « less

    We report the first detection of circumstellar CO in a globular cluster. Observations with ALMA have detected the CO J = 3–2 and SiO v = 1 J = 8 − 7 transitions at 345 and 344 GHz, respectively, around V3 in 47 Tucanae (NGC 104; [Fe/H]  = –0.72 dex), a star on the asymptotic giant branch. The CO line is detected at 7σ at a rest velocity vLSR  = –40.6 km s−1 and expansion velocity of 3.2 ± ∼0.4 km s−1. The brighter, asymmetric SiO line may indicate a circumstellar maser. The stellar wind is slow compared to similar Galactic stars, but the dust opacity remains similar to Galactic comparisons. We suggest that the mass-loss rate is set by the levitation of material into the circumstellar environment by pulsations, but that the terminal wind-expansion velocity is determined by radiation pressure on the dust: a pulsation-enhanced dust-driven wind. We suggest the metal-poor nature of the star decreases the grain size, slowing the wind and increasing its density and opacity. Metallic alloys at high altitudes above the photosphere could also provide an opacity increase. The CO line is weaker than expected from Galactic AGB stars, but its strength confirms a model that includes CO dissociation by the strong interstellar radiation field present inside globular clusters.

    more » « less
  4. Free, publicly-accessible full text available December 1, 2024
  5. A<sc>bstract</sc>

    A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV at the LHC during 2016–2018. The data set corresponds to an integrated luminosity of 138 fb1. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pT) of the leading pair of leptons and/or jets as well as thepTof on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. Free, publicly-accessible full text available November 1, 2024
  7. Abstract

    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared.

    more » « less
    Free, publicly-accessible full text available November 1, 2024
  8. Free, publicly-accessible full text available November 1, 2024
  9. Free, publicly-accessible full text available November 1, 2024