Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Networks not employing destination-side source address validation (DSAV) expose themselves to a class of pernicious attacks which could be easily prevented by filtering inbound traffic purporting to originate from within the network. In this work, we survey the pervasiveness of networks vulnerable to infiltration using spoofed addresses internal to the network. We issue recursive Domain Name System (DNS) queries to a large set of known DNS servers worldwide, using various spoofed-source addresses. We classify roughly half of the 62,000 networks (autonomous systems) we tested as vulnerable to infiltration due to lack of DSAV. As an illustration of the dangers these networks expose themselves to, we demonstrate the ability to fingerprint the operating systems of internal DNS servers. Additionally, we identify nearly 4,000 DNS server instances vulnerable to cache poisoning attacks due to insufficient---and often non-existent---source port randomization, a vulnerability widely publicized 12 years ago.more » « less
-
Polymerization-induced self-assembly (PISA) is a facile method to obtain block copolymer aggregates with defined morphologies. However, the transitions between these morphologies have been difficult to monitor directly in real-time during the polymerization. Herein, we describe a straightforward and readily accessible in situ method to monitor the evolution of nanostructure via changes in internal hydrophobicity during the PISA process using a polymer-tethered pyrene fluorescent probe. We were able to correlate morphological transitions with changes of the pyrene emission and gain unprecedented insight into the evolution of core hydrophobicity during PISA.more » « less
-
Abstract Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their “intermediate” microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.more » « less
An official website of the United States government
