skip to main content

Search for: All records

Creators/Authors contains: "Richter, J. H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Subseasonal weather prediction can reduce economic disruption and loss of life, especially during “windows of opportunity” when noteworthy events in the Earth system are followed by characteristic weather patterns. Sudden stratospheric warmings (SSWs), breakdowns of the winter stratospheric polar vortex, are one such event. They often precede warm temperatures in Northern Canada and cold, stormy weather throughout Europe and the United States - including the most recent SSW on January 5th, 2021. Here we assess the drivers of surface weather in the weeks following the SSW through initial condition “scrambling” experiments using the real-time CESM2(WACCM6) Earth system prediction framework. We find that the SSW itself had a limited impact, and that stratospheric polar vortex stretching and wave reflection had no discernible contribution to the record cold in North America in February. Instead, the tropospheric circulation and bidirectional coupling between the troposphere and stratosphere were dominant contributors to variability.

    more » « less
  2. Abstract

    The predictability of the middle atmosphere during major sudden stratospheric warmings (SSWs) is investigated based on subseasonal hindcasts in the Community Earth System Model, version 2 with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM2[WACCM6]). The CESM2(WACCM6) hindcasts allow for the first comprehensive investigation into the predictability of the mesosphere and lower thermosphere (MLT) during SSWs. Analysis of 14 major SSWs demonstrates that CESM2(WACCM6) hindcasts initialized5–15 days prior to the SSW onset are able to predict the timing of the SSW, though they underestimate the strength of the SSW. Aspects of the MLT variability, such as the mesosphere cooling and enhanced semidiurnal tide, are found to be well predicted. The demonstrated ability to predict MLT variability during SSWs indicates the potential for improved multi‐day space weather forecasting. Improved space weather forecasting may be achieved by using whole atmosphere models that can predict the MLT variability that drives ionosphere‐thermosphere variability during SSWs.

    more » « less
  3. Abstract

    Tropical gravity waves that are generated by convection are generally too small in scale and too high in frequency to be resolved in global climate models, yet their drag forces drive the important global‐scale quasi‐biennial oscillation (QBO) in the lower stratosphere, and models rely on parameterizations of gravity wave drag to simulate the QBO. We compare detailed properties of tropical parameterized gravity waves in the Whole Atmosphere Community Climate Model version 6 (WACCM6) with gravity waves observed by long‐duration superpressure balloons and also compare properties of parameterized convective latent heating with satellite data. Similarities and differences suggest that the WACCM6 parameterizations are excellent tools for representing tropical gravity waves, but the results also suggest detailed changes to the gravity wave parameterization tuning parameter assumptions that would bring the parameterized waves into much better agreement with observations. While WACCM6 currently includes only nonstationary gravity waves from convection, adding gravity waves generated by the steady component of the heating that are stationary relative to moving convective rain cells is likely to improve the simulation of the QBO in the model. The suggested changes have the potential to alleviate common biases in simulated QBO circulations in models.

    more » « less
  4. Abstract

    Mesoscale organization of convection is typically not represented in global circulation models, and hence its influence on the global circulation is not accounted for. The heating component of a parameterization that represents the dynamical and physical effects of circulations associated with organized convection, referred to as the multiscale coherent structure parameterization (MCSP), is implemented in the Energy Exascale Earth System Model version 1 (E3SMv1). Numerical simulations are conducted to assess its impact on the simulated climate. Besides E3SMv1 simulations, we performed high‐resolution (2 km) simulations using the Weather Research and Forecasting (WRF) Model to determine the temperature tendencies induced by mesoscale convective systems embedded in deep convection. We tuned the free parameters of the MCSP based on the WRF simulations. MCSP heating enhances Kevin wave spectra in E3SMv1, improves the representation of the Madden‐Julian Oscillation, and reduces precipitation biases over the tropical Pacific.

    more » « less
  5. Abstract

    Geoengineering methods could potentially offset aspects of greenhouse gas‐driven climate change. However, before embarking on any such strategy, a comprehensive understanding of its impacts must be obtained. Here, a 20‐member ensemble of simulations with the Community Earth System Model with the Whole Atmosphere Community Climate Model as its atmospheric component is used to investigate the projected hydroclimate changes that occur when greenhouse gas‐driven warming, under a high emissions scenario, is offset with stratospheric aerosol geoengineering. Notable features of the late 21st century hydroclimate response, relative to present day, include a reduction in precipitation in the Indian summer monsoon, over much of Africa, Amazonia and southern Chile and a wintertime precipitation reduction over the Mediterranean. Over most of these regions, the soil desiccation that occurs with global warming is, however, largely offset by the geoengineering. A notable exception is India, where soil desiccation and an approximate doubling of the likelihood of monsoon failures occurs. The role of stratospheric heating in the simulated hydroclimate change is determined through additional experiments where the aerosol‐induced stratospheric heating is imposed as a temperature tendency, within the same model, under present day conditions. Stratospheric heating is found to play a key role in many aspects of projected hydroclimate change, resulting in a general wet‐get‐drier, dry‐get‐wetter pattern in the tropics and extratropical precipitation changes through midlatitude circulation shifts. While a rather extreme geoengineering scenario has been considered, many, but not all, of the precipitation features scale linearly with the offset global warming.

    more » « less