skip to main content

Search for: All records

Creators/Authors contains: "Riebe, Clifford S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Erosion at Earth’s surface exposes underlying bedrock to climate-driven chemical and physical weathering, transforming it into a porous, ecosystem-sustaining substrate consisting of weathered bedrock, saprolite, and soil. Weathering in saprolite is typically quantified from bulk geochemistry assuming physical strain is negligible. However, modeling and measurements suggest that strain in saprolite may be common, and therefore anisovolumetric weathering may be widespread. To explore this possibility, we quantified the fraction of porosity produced by physical weathering, FPP, at three sites with differing climates in granitic bedrock of the Sierra Nevada, California, USA. We found that strain produces more porosity than chemical mass loss at each site, indicative of strongly anisovolumetric weathering. To expand the scope of our study, we quantified FPP using available volumetric strain and mass loss data from granitic sites spanning a broader range of climates and erosion rates. FPP in each case is ≥0.12, indicative of widespread anisovolumetric weathering. Multiple regression shows that differences in precipitation and erosion rate explain 94% of the variance in FPP and that >98% of Earth’s land surface has conditions that promote anisovolumetric weathering in granitic saprolite. Our work indicates that anisovolumetric weathering is the norm, rather than the exception, and highlights the importance of climate and erosion as drivers of subsurface physical weathering. 
    more » « less
  2. Abstract

    As bedrock weathers to regolith – defined here as weathered rock, saprolite, and soil – porosity grows, guides fluid flow, and liberates nutrients from minerals. Though vital to terrestrial life, the processes that transform bedrock into soil are poorly understood, especially in deep regolith, where direct observations are difficult. A 65-m-deep borehole in the Calhoun Critical Zone Observatory, South Carolina, provides unusual access to a complete weathering profile in an Appalachian granitoid. Co-located geophysical and geochemical datasets in the borehole show a remarkably consistent picture of linked chemical and physical weathering processes, acting over a 38-m-thick regolith divided into three layers: soil; porous, highly weathered saprolite; and weathered, fractured bedrock. The data document that major minerals (plagioclase and biotite) commence to weather at 38 m depth, 20 m below the base of saprolite, in deep, weathered rock where physical, chemical and optical properties abruptly change. The transition from saprolite to weathered bedrock is more gradational, over a depth range of 11–18 m. Chemical weathering increases steadily upward in the weathered bedrock, with intervals of more intense weathering along fractures, documenting the combined influence of time, reactive fluid transport, and the opening of fractures as rock is exhumed and transformed near Earth’s surface.

    more » « less
  3. Abstract

    The size distributions of sediment delivered from hillslopes to rivers profoundly influence river morphodynamics, including river incision into bedrock and the quality of aquatic habitat. Yet little is known about the factors that influence size distributions of sediment produced by weathering on hillslopes. We present results of a field study of hillslope sediment size distributions at Inyo Creek, a steep catchment in granitic bedrock of the Sierra Nevada, USA. Particles sampled near the base of hillslopes, adjacent to the trunk stream, show a pronounced decrease in sediment size with decreasing sample elevation across all but the coarsest size classes. Measured size distributions become increasingly bimodal with decreasing elevation, exhibiting a coarse, bouldery mode that does not change with elevation and a more abundant finer mode that shifts from cobbles at the highest elevations to gravel at mid elevations and finally to sand at low elevations. We interpret these altitudinal variations in hillslope sediment size to reflect changes in physical, chemical, and biological weathering that can be explained by the catchment's strong altitudinal gradients in topography, climate, and vegetation cover. Because elevation and travel distance to the outlet are closely coupled, the altitudinal trends in sediment size produce a systematic decrease in sediment size along hillslopes parallel to the trunk stream. We refer to this phenomenon as ‘downvalley fining.’ Forward modeling shows that downvalley fining of hillslope sediment is necessary for downstream fining of the long‐term average flux of coarse sediment in mountain landscapes where hillslopes and channels are coupled and long‐term net sediment deposition is negligible. The model also shows that abrasion plays a secondary role in downstream fining of coarse sediment flux but plays a dominant role in partitioning between the bedload and suspended load. Patterns observed at Inyo Creek may be widespread in mountain ranges around the world. © 2020 John Wiley & Sons Ltd

    more » « less
  4. Abstract

    The porous near‐surface layer of the Earth's crust – the critical zone – constitutes a vital reservoir of water for ecosystems, provides baseflow to streams, guides recharge to deep aquifers, filters contaminants from groundwater, and regulates the long‐term evolution of landscapes. Recent work suggests that the controls on regolith thickness include climate, tectonics, lithology, and vegetation. However, the relative paucity of observations of regolith structure and properties at landscape scales means that theoretical models of critical zone structure are incompletely tested. Here we present seismic refraction and electrical resistivity surveys that thoroughly characterize subsurface structure in a small catchment in the Santa Catalina Mountains, Arizona, USA, where slope‐aspect effects on regolith structure are expected based on differences in vegetation. Our results show a stark contrast in physical properties and inferred regolith thickness on opposing slopes, but in the opposite sense of that expected from environmental models and observed vegetation patterns. Although vegetation (as expressed by normalized difference vegetation index [NDVI]) is denser on the north‐facing slope, regolith on the south‐facing slope is four times thicker (as indicated by lower seismic velocities and resistivities). This contrast cannot be explained by variations in topographic stress or conventional hillslope morphology models. Instead, regolith thickness appears to be controlled by metamorphic foliation: regolith is thicker where foliation dips into the topography, and thinner where foliation is nearly parallel to the surface. We hypothesize that, in this catchment, hydraulic conductivity and infiltration capacity control weathering: infiltration is hindered and regolith is thin where foliation is parallel to the surface topography, whereas water infiltrates deeper and regolith is thicker where foliation intersects topography at a substantial angle. These results suggest that bedrock foliation, and perhaps by extension sedimentary layering, can control regolith thickness and must be accounted for in models of critical zone development. © 2020 John Wiley & Sons, Ltd.

    more » « less