skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Riet, Jocelyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mesoporous polyetherimides are important high-performance polymers. Conventional strategies to prepare porous polyetherimides, and polyimide in general, are based on covalent organic framework or thermolysis of sacrificial polymers. The former produces micropores due to intrinsically crosslinked microstructures, and the latter results in macropores because of a blowing effect by the sacrificial polymers. The preparation of mesopores remains a challenge. Here we have prepared mesoporous polyetherimide films by hydrolyzing polylactide- b -polyetherimide- b -polylactide (AIA). Controlled by molecular weight and volume fraction of polylactide in AIA, the porous films exhibit an average pore width of 24 nm. The mesoporous polyetherimide films exhibit a storage modulus of ∼1 GPa at ambient temperatures. This work advances the chemistry of high-performance polymers and provides an alternative strategy to prepare mesoporous polymers, enabling potential use as high-performance membranes for separation, purification, and electrochemistry. 
    more » « less