skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rios, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wide-area scaling trends require new approaches to Internet Protocol (IP) lookup, enabled by modern networking chips such as Intel Tofino [35], AMD Pensando [2], and Nvidia BlueField [55], which provide substantial ternary content-addressable memory (TCAM) and static random-access memory (SRAM). However, designing and evaluating scalable algorithms for these chips is challenging due to hardware-level constraints. To address this, we introduce the CRAM (CAM+RAM) lens, a framework that combines a formal model for evaluating algorithms on modern network processors with a set of optimization idioms. We demonstrate the effectiveness of CRAM by designing and evaluating three new IP lookup schemes: RESAIL, BSIC, and MASHUP. RESAIL enables Tofino-2 to scale to 2.25 million IPv4 prefixes-- likely sufficient for the next decade--while a pure TCAM approach supports only 250k prefixes, just 27% of the current global IPv4 routing table. Similarly, BSIC scales to 390k IPv6 prefixes on Tofino-2, supporting 3.2 times as many prefixes as a pure TCAM implementation. In contrast, existing state-of-the-art algorithms, SAIL [83] for IPv4 and HI-BST [65] for IPv6, scale to considerably smaller sizes on Tofino-2. 
    more » « less
    Free, publicly-accessible full text available September 17, 2026