Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. The typically large distances, extinction, and crowding of Galactic supermassive star clusters (stellar clusters more massive than 104M⊙) have so far hampered the identification of their very low mass members, required to extend our understanding of star and planet formation, and early stellar evolution, to the extremely energetic star-forming environment typical of starbursts. This situation has now evolved thanks to theJames WebbSpace Telescope (JWST), and its unmatched resolution and sensitivity in the infrared. Aims. In this paper, the third of the series of the Extended Westerlund 1 and 2 Open Clusters Survey (EWOCS), we present JWST/NIRCam and JWST/MIRI observations of the supermassive star cluster Westerlund 1. These observations are specifically designed to unveil the cluster members down to the brown dwarf mass regime, and to allow us to select and study the protoplane-tary disks in the cluster and to study the mutual feedback between the cluster members and the surrounding environment. Methods. Westerlund 1 was observed as part of JWST GO-1905 for 23.6 hours. The data have been reduced using the JWST calibration pipeline, together with specific tools necessary to remove artifacts, such as the 1 /frandom noise in NIRCam images. Source identification and photometry were performed withDOLPHOT. Results. The MIRI images show a plethora of different features. Diffuse nebular emission is observed around the cluster, which is typically composed of myriads of droplet-like features pointing toward the cluster center or the group of massive stars surrounding the Wolf–Rayet star W72/A. A long pillar is also observed in the northwest. The MIRI images also show resolved shells and outflows surrounding the M-type supergiants W20, W26, W75, and W237, the sgB[e] star W9 and the yellow hypergiant W4. Some of these shells have been observed before at other wavelengths, but never with the level of detail provided by JWST. The color-magnitude diagrams built using the NIRCam photometry show a clear cluster sequence, which is marked in its upper part by the 1828 NIRCam stars with X-ray counterparts. NIRCam observations using the F115W filter have reached the 23.8 mag limit with 50% completeness (roughly corresponding to a 0.06 M0 brown dwarf).more » « less
-
Free, publicly-accessible full text available September 1, 2026
-
Measurements of the polarization observables for the reaction using a linearly polarized photon beam of energy 1.1 to 2.1 GeV are reported. The measured data provide information on a channel that has not been studied extensively, but is required for a full coupled-channel analysis in the nucleon resonance region. Observables have been simultaneously extracted using likelihood sampling with a Markov-Chain Monte Carlo process. Angular distributions in bins of photon energy are produced for each polarization observable. , and are first time measurements of these observables in this reaction. The extraction of extends the energy range beyond a previous measurement. The measurement of , the recoil polarization, is consistent with previous measurements. The measured data are shown to be significant enough to affect the estimation of the nucleon resonance parameters when fitted within a coupled-channels model. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
-
The double-spin-polarization observable E for γ p → pπ0 has been measured with the CEBAF Large Acceptance Spectrometer (CLAS) at photon beam energies Eγ from 0.367 to 2.173 GeV (corresponding to center-ofmass energies from 1.240 to 2.200 GeV) for pion center-ofmass angles, cos θc.m. π0 , between − 0.86 and 0.82. These new CLAS measurements cover a broader energy range and have smaller uncertainties compared to previous CBELSA data and provide an important independent check on systematics. These measurements are compared to predictions as well as new global fits from The George Washington University, Mainz, and Bonn-Gatchina groups. Their inclusion in multipole analyses will allow us to refine our understanding of the single-pion production contribution to the Gerasimov-Drell- Hearn sum rule and improve the determination of resonance properties, which will be presented in a future publication.more » « less
An official website of the United States government
