Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The emerging field of quartz luminescence properties in Earth-surface processes research shows promise, with optically stimulated luminescence (OSL) sensitivity proposed as a valuable tool for provenance or sediment history tracing. However, the geologic processes that lead to quartz sensitization remain under investigation. Here we study the impact of source rock and surface processes on the luminescence properties of quartz sand from bedrock and modern and Late Pleistocene alluvium generated from a mountainous catchment in northern Utah, USA. Continuous wave and linear modulated OSL are used to characterize the luminescence sensitivity and intensity of the fast-decay component. We compare the OSL sensitivity with sand-grain provenance and with proxies for surface processes such as topographic metrics, cosmogenic 10Be-derived erosion rates, chemical weathering indices, and magnetic susceptibility. Late Pleistocene sediment has low OSL sensitivity and a weak fast-decay component, similar to bedrock samples from the source area. In contrast, modern alluvium is dominated by the fast-decay component and has higher and more variable OSL sensitivity, with no clear relationship to bedrock sources in their prospective catchment areas. There is, however, an inverse relationship between OSL sensitivity and catchment-averaged erosion rates and a positive relationship with chemical weathering indices and magnetic susceptibility. These metrics suggest that the modern alluvium has experienced increased residence time in the shallow critical zone compared to the Late Pleistocene sediments. We suggest that changes in hillslope processes between the effectively wetter, cooler Pleistocene and the dryer, warmer conditions of the Holocene modulated the luminescence properties. The results suggest that climatic controls on rates and processes of chemical and mechanical weathering and sediment transport and residence within the critical zone are encoded in the luminescence properties of quartz sand.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Rapid sediment accumulation rates (SAR) in a fan delta situated on the rapidly uplifting footwall of the Taormina normal fault in NE Sicily preserves a rare record of earthquakes and base level change for a tightly coupled source to sink system. We use this sedimentary archive to reconstruct the kinematics and slip history of the fault and further an understanding of how tectonic forcing across various scales are encoded in stratigraphy. A revised luminescence-based age model indicates that ~82 m of the Pagliara fan-delta foreset facies was deposited in ~11 ka at a mean SAR of ~0.74 cm/yr during MIS 7. Syn-depositional terrestrial cosmogenic nuclide (TCN) determined paleoerosion rates of 0.91±0.12 mm/yr and 1.31 ±0.61 mm/yr are similar to published modern erosion rates for the Pagliara basin of 0.97 ±0.11 mm/yr. At the stratigraphic scale, a time series of magnetic susceptibility (c) sampled at 1 m intervals in the foresets displays four ~2,800 yr / 20 m-thick cycles of growing c, bounded by sharp decreases that do not coincide with changes in sediment texture. The c of the low-grade metamorphic bedrock in the source is 20-100 times weaker than the c of rubified soils mantling the hillslopes, which is comparable to the c of the delta sediments. We propose that large, bedrock-cored landslides quasi-periodically deliver weak c sediment to the delta that dilutes a c signal otherwise dominated by the stripping of soil-mantled hillslopes. We propose that centennial-scale recurrence interval earthquakes are most capable at triggering a basin-scale landslide only after channel incision has increased relief of hillslopes to the threshold condition, which requires millennia to achieve. At the landscape scale of delta geometry and location, the Pagliara delta accumulated in a hanging wall basin that has since been inverted. We reconstruct the history of base level fall for the delta from an inversion of fluvial topography and apportion that record to its rock uplift, delta deposition, and eustatic components. We show that footwall uplift has been unsteady over the past 600 ka ranging from -1 to 3 mm/yr. The integration of our stratigraphic- and landscape scale observations furthers our understanding of the natural hazards related to normal fault earthquakes and their impact on sediment dynamics in this steep, active tectonic setting.more » « lessFree, publicly-accessible full text available September 30, 2025
-
Abstract. Basal materials in ice cores hold information about paleoclimate conditions, glacial processes, and the timing of past ice-free intervals, all of which aid understanding of ice sheet stability and its contribution to sea level rise in a warming climate. Only a few cores have been drilled through ice sheets into the underlying sediment and bedrock, producing limited material for analysis. The last of three Camp Century ice cores, which the U.S. Army collected in northwestern Greenland from 1963–1966 CE, recovered about 3.5 m of subglacial material, including ice and sediment. Here, we document the scientific history of the Camp Century subglacial material. We present our recent core-cutting, sub-sampling, and processing methodology and results for this unique archive. In 1972 CE, curators at the Buffalo, New York, Ice Core Laboratory cut the original core sections into 32 segments that were each about 10 cm long. Since then, two segments were lost and are unaccounted for, two were thawed, and two were cut as pilot samples in 2019 CE. Except for the two thawed segments, the rest of the extant core has remained frozen since collection. In 2021 CE, we documented, described, and then cut each of the remaining frozen archived segments (n=26). We saved an archival half and cut the working half into eight oriented sub-samples under controlled temperature and light conditions for physical, geochemical, isotopic, sedimentological, magnetic, and biological analyses. Our approach was designed to maximize sample usage for multiproxy analysis, minimize contamination, and preserve archive material for future analyses of this legacy subglacial material. Grain size, bulk density, sedimentary features, magnetic susceptibility, and ice content, as well as pore ice pH and conductivity, suggest that the basal sediment contains five stratigraphic units. We interpret these stratigraphic units as representing different depositional environments in subglacial or ice-free conditions: from bottom to top, a diamicton with subhorizontal ice lenses (Unit 1), vertically fractured ice with dispersed fine-grained sediments (<20 % in mass) (Unit 2), a normally graded bed of pebbles to very fine sand in an icy matrix (Unit 3), bedded very fine to fine sand (Unit 4), and stratified medium to coarse sand (Unit 5). Plant macrofossils are present in all samples and are most abundant in Units 3 and 4; insect remains are present in some samples (Units 1, 3, and 5). Our approach provides a working template for future studies of ice core basal materials because it includes intentional planning of core sub-sampling, processing methodologies, and archiving strategies to optimize the collection of paleoclimate, glacial process, geochemical, geochronological, and sediment properties from archives of limited size. Our work benefited from a carefully curated and preserved archive, allowing the application of analytical techniques not available in 1966 CE. Preserving uncontaminated core material for future analyses that use currently unavailable tools and techniques is an important consideration for rare archive materials such as these from Camp Century.more » « less
-
Abstract. Determining the timing and extent of Quaternary glaciations around the globe is critical to understanding the drivers behind climate change and glacier fluctuations. Evidence from the southern mid-latitudes indicates that local glacial maxima preceded the global Last Glacial Maximum (LGM), implying that feedbacks in the climate system or ice dynamics played a role beyond the underlying orbital forcings. To shed light on these processes, we investigated the glacial landforms shaped and deposited by the Lago Argentino glacier (50° S), an outlet lobe of the former Patagonian Ice Sheet, in southern Argentina. We mapped geomorphological features on the landscape and dated moraine boulders and outwash sediments using 10Be cosmogenic nuclides and feldspar infrared stimulated luminescence (IRSL) to constrain the chronology of glacial advance and retreat. We report that the Lago Argentino glacier lobe reached more extensive limits prior to the global LGM, advancing during the middle to late Pleistocene between 243–132 ka and during Marine Isotope Stage 3 (MIS 3), culminating at 44.5 ± 8.0 and at 36.6 ± 1.0 ka. Our results indicate that the most extensive advance of the last glacial cycle occurred during MIS 3, and we hypothesize that this was a result of longer and colder winters, as well as increased precipitation delivered by a latitudinal migration of the Southern Westerly Winds belt, highlighting the role of local and regional climate feedbacks in modulating ice mass changes in the southern mid-latitudes.more » « less
-
Abstract In most landscape evolution models, extreme rainfall enhances river incision. In steep landscapes, however, these events trigger landslides that can buffer incision via increased sediment delivery and aggradation. We quantify landslide sediment aggradation and erosional buffering with a natural experiment in southern Taiwan where a northward gradient in tectonic activity drives increasing landscape steepness. We find that landscape response to extreme rainfall during the 2009 typhoon Morakot varied along this gradient, where steep areas experienced widespread channel sediment aggradation of >10 m and less steep areas did not noticeably aggrade. We model sediment export to estimate a sediment removal timeline and find that steep, tectonically active areas with the most aggradation may take centuries to resume bedrock incision. Expected sediment cover duration reflects tectonic uplift. We find that despite high stream power, sediment cover may keep steep channels from eroding bedrock for up to half of a given time period. This work highlights the importance of dynamic sediment cover in landscape evolution and suggests a mechanism by which erosional efficiency in tectonically active landscapes may decrease as landscape steepness increases.more » « less
-
Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.more » « less
-
The development and application of luminescence dating and dosimetry techniques have grown exponentially in the last several decades. Luminescence methods provide age control for a broad range of geological and archaeological contexts and can characterize mineral and glass properties linked to geologic origin, Earth-surface processes, and past exposure to light, heat, and ionizing radiation. The applicable age range for luminescence methods spans the last 500,000 years or more, which covers the period of modern human evolution, and provides context for rates and magnitudes of geological processes, hazards, and climate change. Given the growth in applications and publications of luminescence data, there is a need for unified, community-driven guidance regarding the publication and interpretation of luminescence results. This paper presents a guide to the essential information necessary for publishing and archiving luminescence ages as well as supporting data that is transportable and expandable for different research objectives and publication outlets. We outline the information needed for the interpretation of luminescence data sets, including data associated with equivalent dose, dose rate, age models, and stratigraphic context. A brief review of the fundamentals of luminescence techniques and applications, including guidance on sample collection and insight into laboratory processing and analysis steps, is presented to provide context for publishing and data archiving.more » « less
-
Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance.26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.more » « less