skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rivera, Danielle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Background Aerosol transmission of COVID-19 is the subject of ongoing policy debate. Characterizing aerosol produced by people with COVID-19 is critical to understanding the role of aerosols in transmission. Objective We investigated the presence of virus in size-fractioned aerosols from six COVID-19 patients admitted into mixed acuity wards in April of 2020. Methods Size-fractionated aerosol samples and aerosol size distributions were collected from COVID-19 positive patients. Aerosol samples were analyzed for viral RNA, positive samples were cultured in Vero E6 cells. Serial RT-PCR of cells indicated samples where viral replication was likely occurring. Viral presence was also investigated by western blot and transmission electron microscopy (TEM). Results SARS-CoV-2 RNA was detected by rRT-PCR in all samples. Three samples confidently indicated the presence of viral replication, all of which were from collected sub-micron aerosol. Western blot indicated the presence of viral proteins in all but one of these samples, and intact virions were observed by TEM in one sample. Significance Observations of viral replication in the culture of submicron aerosol samples provides additional evidence that airborne transmission of COVID-19 is possible. These results support the use of efficient respiratory protection in both healthcare and by the public to limit transmission. 
    more » « less
  2. Abstract

    The effects of genetic introgression on species boundaries and how they affect species’ integrity and persistence over evolutionary time have received increased attention. The increasing availability of genomic data has revealed contrasting patterns of gene flow across genomic regions, which impose challenges to inferences of evolutionary relationships and of patterns of genetic admixture across lineages. By characterizing patterns of variation across thousands of genomic loci in a widespread complex of true toads (Rhinella), we assess the true extent of genetic introgression across species thought to hybridize to extreme degrees based on natural history observations and multilocus analyses. Comprehensive geographic sampling of five large‐ranged Neotropical taxa revealed multiple distinct evolutionary lineages that span large geographic areas and, at times, distinct biomes. The inferred major clades and genetic clusters largely correspond to currently recognized taxa; however, we also found evidence of cryptic diversity within taxa. While previous phylogenetic studies revealed extensive mitonuclear discordance, our genetic clustering analyses uncovered several admixed individuals within major genetic groups. Accordingly, historical demographic analyses supported that the evolutionary history of these toads involved cross‐taxon gene flow both at ancient and recent times. Lastly, ABBA‐BABA tests revealed widespread allele sharing across species boundaries, a pattern that can be confidently attributed to genetic introgression as opposed to incomplete lineage sorting. These results confirm previous assertions that the evolutionary history ofRhinellawas characterized by various levels of hybridization even across environmentally heterogeneous regions, posing exciting questions about what factors prevent complete fusion of diverging yet highly interdependent evolutionary lineages.

     
    more » « less
  3. Abstract Aim

    Species with wide distributions spanning the African Guinean and Congolian rain forests are often composed of genetically distinct populations or cryptic species with geographic distributions that mirror the locations of the remaining forest habitats. We used phylogeographic inference and demographic model testing to evaluate diversification models in a widespread rain forest species, the African foam‐nest treefrogChiromantis rufescens.

    Location

    Guinean and Congolian rain forests, West and Central Africa.

    Taxon

    Chiromantis rufescens.

    Methods

    We collected mitochondrial DNA (mtDNA) and single‐nucleotide polymorphism (SNP) data for 130 samples ofC. rufescens. After estimating population structure and inferring species trees using coalescent methods, we tested demographic models to evaluate alternative population divergence histories that varied with respect to gene flow, population size change and periods of isolation and secondary contact. Species distribution models were used to identify the regions of climatic stability that could have served as forest refugia since the last interglacial.

    Results

    Population structure withinC. rufescensresembles the major biogeographic regions of the Guinean and Congolian forests. Coalescent‐based phylogenetic analyses provide strong support for an early divergence between the western Upper Guinean forest and the remaining populations. Demographic inferences support diversification models with gene flow and population size changes even in cases where contemporary populations are currently allopatric, which provides support for forest refugia and barrier models. Species distribution models suggest that forest refugia were available for each of the populations throughout the Pleistocene.

    Main conclusions

    Considering historical demography is essential for understanding population diversification, especially in complex landscapes such as those found in the Guineo–Congolian forest. Population demographic inferences help connect the patterns of genetic variation to diversification model predictions. The diversification history ofC. rufescenswas shaped by a variety of processes, including vicariance from river barriers, forest fragmentation and adaptive evolution along environmental gradients.

     
    more » « less