skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rivers, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding experimental design (e.g. control of variable strategy or CVS) is foundational for scientific reasoning. Previous research has demonstrated that demonstrations with cognitive conflict (e.g. asking students to evaluate and explain different experimental designs) are effective in promoting children’s scientific reasoning, however, the implementation of this approach often requires significant instructional time and resources. This study reports the impact of a brief, scalable intervention on one component of scientific reasoning, understanding experimental design, by providing brief instruction on the control-of-variable strategy (CVS), embedded in a food science activity (popping popcorn). Threehundred and seven (307) 3rd-5th graders in the midwestern US participated in either a CVS intervention or a demonstration on the science of popcorn without a CVS intervention. Performance on a pre-activity test (involving identification of good and bad experiments) did not differ between conditions. By contrast, postactivity performance was significantly greater for classes who received the CVS intervention. Thus, a brief discussion of the CVS embedded within a food-science demonstration can have a meaningful impact on children’s understanding of conducting a quality experiment. Our results demonstrate the efficacy of a simple, low-cost intervention for CVS that is potentially scalable. 
    more » « less
  2. Retrieval practice (i.e., recalling information from memory) and elaboration (i.e., generating meaningful explanations and examples) promote learning, but students underutilize these strategies when studying. We developed a strategy-training intervention addressing prominent barriers to students’ strategy use: lack of knowledge, lack of motivation, and poor management of study time. Undergraduates in an Introductory Biology course were randomly assigned to receive the strategy-training intervention or to a healthy life habits control group. No significant differences were found between the two groups on measures of learning behavior or achievement collected across the semester, emphasizing the challenge of changing students’ learning habits. Future research should investigate strategy training with lower performing students integrated into a course. 
    more » « less