skip to main content

Search for: All records

Creators/Authors contains: "Rizzo, Donna M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Understanding and predicting catchment responses to a regional disturbance is difficult because catchments are spatially heterogeneous systems that exhibit unique moderating characteristics. Changes in precipitation composition in the Northeastern U.S. is one prominent example, where reduction in wet and dry deposition is hypothesized to have caused increased dissolved organic carbon (DOC) export from many northern hemisphere forested catchments; however, findings from different locations contradict each other. Using shifts in acid deposition as a test case, we illustrate an iterative “process and pattern” approach to investigate the role of catchment characteristics in modulating the steam DOC response. We use a novel dataset that integrates regional and catchment-scale atmospheric deposition data, catchment characteristics and co-located stream Q and stream chemistry data. We use these data to investigate opportunities and limitations of a pattern-to-process approach where we explore regional patterns of reduced acid deposition, catchment characteristics and stream DOC response and specific soil processes at select locations. For pattern investigation, we quantify long-term trends of flow-adjusted DOC concentrations in stream water, along with wet deposition trends in sulfate, for USGS headwater catchments using Seasonal Kendall tests and then compare trend results to catchment attributes. Our investigation of climatic, topographic, and hydrologic catchment attributesmore »vs. directionality of DOC trends suggests soil depth and catchment connectivity as possible modulating factors for DOC concentrations. This informed our process-to-pattern investigation, in which we experimentally simulated increased and decreased acid deposition on soil cores from catchments of contrasting long-term DOC response [Sleepers River Research Watershed (SRRW) for long-term increases in DOC and the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) for long-term decreases in DOC]. SRRW soils generally released more DOC than SSHCZO soils and losses into recovery solutions were higher. Scanning electron microscope imaging indicates a significant DOC contribution from destabilizing soil aggregates mostly from hydrologically disconnected landscape positions. Results from this work illustrate the value of an iterative process and pattern approach to understand catchment-scale response to regional disturbance and suggest opportunities for further investigations.« less
  3. Abstract

    Excessive phosphorus (P) export to aquatic ecosystems can lead to impaired water quality. There is a growing interest among watershed managers in using restored wetlands to retain P from agricultural landscapes and improve water quality. We develop a novel framework for prioritizing wetland restoration at a regional scale. The framework uses an ecosystem service model and an optimization algorithm that maximizes P reduction for given levels of restoration cost. Applying our framework in the Lake Champlain Basin, we find that wetland restoration can reduce P export by 2.6% for a budget of $50 M and 5.1% for a budget of $200 M. Sensitivity analysis shows that using finer spatial resolution data for P sources results in twice the P reduction benefits at a similar cost by capturing hot-spots on the landscape. We identify 890 wetlands that occur in more than 75% of all optimal scenarios and represent priorities for restoration. Most of these wetlands are smaller than 7 ha with contributing area less than 100 ha and are located within 200 m of streams. Our approach provides a simple yet robust tool for targeting restoration efforts at regional scales and is readily adaptable to other restoration strategies.