Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Star formation is a fundamental, yet poorly understood, process of the Universe. It is important to study how star formation occurs in different galactic environments. Thus, here, in the first of a series of papers, we introduce the Low-metallicity Star Formation (LZ-STAR) survey of the Sh2-284 (hereafter S284) region, which, atZ ∼ 0.3–0.5Z⊙, is one of the lowest-metallicity star-forming regions of our Galaxy. LZ-STAR is a multifacility survey, including observations with JWST, the Atacama Large Millimeter/submillimeter Array (ALMA), Hubble Space Telescope, Chandra, and Gemini. As a starting point, we report JWST and ALMA observations of one of the most massive protostars in the region, S284p1. The observations of shock-excited molecular hydrogen reveal a symmetric, bipolar outflow originating from the protostar, spanning several parsecs, and fully covered by the JWST field of view and ALMA observations of CO(2–1) emission. These allow us to infer that the protostar has maintained a relatively stable orientation of disk accretion over its formation history. The JWST near-infrared continuum observations detect a centrally illuminated bipolar outflow cavity around the protostar, as well as a surrounding cluster of low-mass young stars. We develop new radiative transfer models of massive protostars designed for the low metallicity of S284. Fitting these models to the protostar’s spectral energy distribution implies a current protostellar mass of ∼10M⊙has formed from an initial ∼100M⊙core over the last ∼3 × 105yr. Overall, these results indicate that massive stars can form in an ordered manner in low-metallicity, protocluster environments.more » « lessFree, publicly-accessible full text available September 10, 2026
-
Identification of a Turnover in the Initial Mass Function of a Young Stellar Cluster Down to 0.5 M JAbstract A successful theory of star formation should predict the number of objects as a function of their mass produced through star-forming events. Previous studies in star-forming regions and the solar neighborhood have identified a mass function increasing from the hydrogen-burning limit down to about 10MJ. Theory predicts a limit to the fragmentation process, providing a natural turnover in the mass function down to the opacity limit of turbulent fragmentation, thought to be near 1–10MJ. Programs to date have not been sensitive enough to probe the hypothesized opacity limit of fragmentation. We present the first identification of a turnover in the initial mass function below 12MJwithin NGC 2024, a young star-forming region. With JWST/NIRCam deep exposures across 0.7–5μm, we identified several free-floating objects down to roughly 3MJwith sensitivity to 0.5MJ. We present evidence for a double power-law model increasing from about 60MJto roughly 12MJ, consistent with previous studies, followed by a decrease down to 0.5MJ. Our results support the predictions of star and brown dwarf formation theory, identifying the theoretical turnover in the mass function and suggesting the fundamental limit of turbulent fragmentation to be near 3MJ.more » « lessFree, publicly-accessible full text available March 10, 2026
-
Abstract We present design considerations for the Transiting Exosatellites, Moons, and Planets in Orion (TEMPO) Survey with the Nancy Grace Roman Space Telescope. This proposed 30 days survey is designed to detect a population of transiting extrasolar satellites, moons, and planets in the Orion Nebula Cluster (ONC). The young (1–3 Myr), densely populated ONC harbors about a thousand bright brown dwarfs (BDs) and free-floating planetary-mass objects (FFPs). TEMPO offers sufficient photometric precision to monitor FFPs with M >1 M J for transiting satellites. The survey is also capable of detecting FFPs down to sub-Saturn masses via direct imaging, although follow-up confirmation will be challenging. TEMPO yield estimates include 14 (3–22) exomoons/satellites transiting FFPs and 54 (8–100) satellites transiting BDs. Of this population, approximately 50% of companions would be “super-Titans” (Titan to Earth mass). Yield estimates also include approximately 150 exoplanets transiting young Orion stars, of which >50% will orbit mid-to-late M dwarfs. TEMPO would provide the first census demographics of small exosatellites orbiting FFPs and BDs, while simultaneously offering insights into exoplanet evolution at the earliest stages. This detected exosatellite population is likely to be markedly different from the current census of exoplanets with similar masses (e.g., Earth-mass exosatellites that still possess H/He envelopes). Although our yield estimates are highly uncertain, as there are no known exoplanets or exomoons analogous to these satellites, the TEMPO survey would test the prevailing theories of exosatellite formation and evolution, which limit the certainty surrounding detection yields.more » « less
An official website of the United States government
