skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roberts, Timothy_V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We apply spatial dynamical-systems techniques to prove that certain spatiotemporal patterns in reversible reaction-diffusion equations undergo snaking bifurcations. That is, in a narrow region of parameter space, countably many branches of patterned states coexist that connect at towers of saddle-node bifurcations. Our patterns of interest are contact defects, which are one-dimensional time-periodic patterns with a spatially oscillating core region that at large distances from the origin in space resemble pure temporally oscillatory states and arise as natural analogues of spiral and target waves in one spatial dimension. We show that these solutions lie on snaking branches that have a more complex structure than has been seen in other contexts. In particular, we predict the existence of families of asymmetric traveling defect solutions with arbitrary background phase offsets, in addition to symmetric standing target and spiral patterns. We prove the presence of these additional patterns by reconciling results in classic ordinary differential equation studies with results from the spatial-dynamics study of patterns in partial differential equations and using geometrical information contained in the stable and unstable manifolds of the background wave trains and their natural equivariance structure. 
    more » « less