Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Walvis Ridge, a time-transgressive series of ridges, oceanic plateau, seamounts, guyots, and two active volcanic islands extending SW from the coast of Namibia, records the evolution of the Tristan-Gough-Walvis Ridge (TGW) hotspot and the opening of the South Atlantic since ~135 Ma. However, much of our current understanding of the interplay between geodynamic cycles, tectonism, and mantle plume generation along the TGW hotspot track is based upon a limited number of dredged rock samples. Here, we present preliminary whole rock major and trace element geochemistry and shipboard physical properties data from Site U1578, located on a Center track guyot in the Guyot Province. The 302 m of igneous section recovered from Site U1578 provides an extraordinary, > 1 Myr record of plume magmatism, submarine volcanism, and geochemical evolution. The chemical stratigraphy of core from Site U1578 provides important new perspectives on submarine volcanism, magma flux, and the transition between continental tholeiitic basalts of the Etendeka flood basalt province and alkaline lavas of the Guyot Province. Core from U1578 records the longest sequence of pillow, sheet, and massive lava flows in the TGW system. Eleven (of 12 total) lithologic flow units record shifts in major and trace element geochemistry and episodic cycles of recharge and fractional crystallization. Preliminary XRF and ICP-MS analyses indicate a dominantly pyroxenite source and document the shift between high TiO2 (>3.5 wt. %) to low TiO2 (<3.5 wt. %) alkaline basalts. Site U1578 core samples from the Guyot Province have lower Nb/Y and Zr/Nb compared to Walvis Ridge sites drilled closer to the African continent (Frio Ridge at Site U1575 and Valdivia Bank at Sites U1576 and U1577), coincident with a transition from plume-ridge interaction to intraplate magmatism with time. This shift resulted in a thicker lithospheric lid and thus deeper and lower degrees of melting, preferentially sampling the enriched plume component. Additionally, shipboard natural gamma radiation (NGR) and magnetic susceptibility (MS) measurements correlate well with observed lithologic characteristics and new ICP-MS and XRF analyses. A 100 m zone of high NGR values neatly overlaps high K2O, and olivine cumulate layers correlate to higher MS and higher concentrations of Cr and Ni.more » « less
-
Context. Flux ropes in the solar wind are a key element of heliospheric dynamics and particle acceleration. When associated with current sheets, the primary formation mechanism is magnetic reconnection and flux ropes in current sheets are commonly used as tracers of the reconnection process. Aims. Whilst flux ropes associated with reconnecting current sheets in the solar wind have been reported, their occurrence, size distribution, and lifetime are not well understood. Methods. Here we present and analyse new Solar Orbiter magnetic field data reporting novel observations of a flux rope confined to a bifurcated current sheet in the solar wind. Comparative data and large-scale context is provided by Wind. Results. The Solar Orbiter observations reveal that the flux rope, which does not span the current sheet, is of ion scale, and in a reconnection formation scenario, existed for a prolonged period of time as it was carried out in the reconnection exhaust. Wind is also found to have observed clear signatures of reconnection at what may be the same current sheet, thus demonstrating that reconnection signatures can be found separated by as much as ∼2000 Earth radii, or 0.08 au. Conclusions. The Solar Orbiter observations provide new insight into the hierarchy of scales on which flux ropes can form, and show that they exist down to the ion scale in the solar wind. The context provided by Wind extends the spatial scale over which reconnection signatures have been found at solar wind current sheets. The data suggest the local orientations of the current sheet at Solar Orbiter and Wind are rotated relative to each other, unlike reconnection observed at smaller separations; the implications of this are discussed with reference to patchy vs. continuous reconnection scenarios.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources.
Free, publicly-accessible full text available November 1, 2025 -
Abstract Active galactic nuclei (AGN) are prime candidate sources of the high-energy, astrophysical neutrinos detected by IceCube. This is demonstrated by the real-time multimessenger detection of the blazar TXS 0506+056 and the recent evidence of neutrino emission from NGC 1068 from a separate time-averaged study. However, the production mechanism of the astrophysical neutrinos in AGN is not well established, which can be resolved via correlation studies with photon observations. For neutrinos produced due to photohadronic interactions in AGN, in addition to a correlation of neutrinos with high-energy photons, there would also be a correlation of neutrinos with photons emitted at radio wavelengths. In this work, we perform an in-depth stacking study of the correlation between 15 GHz radio observations of AGN reported in the MOJAVE XV catalog, and 10 yr of neutrino data from IceCube. We also use a time-dependent approach, which improves the statistical power of the stacking analysis. No significant correlation was found for both analyses, and upper limits are reported. When compared to the IceCube diffuse flux, at 100 TeV and for a spectral index of 2.5, the upper limits derived are ∼3% and ∼9% for the time-averaged and time-dependent cases, respectively.
-
Abstract Name that Neutrino is a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions.Name that Neutrino obtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for bothName that Neutrino and the deep neural network are discussed.