Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As educators and researchers, we often enjoy enlivening classroom discussions by including examples of cutting-edge high-throughput (HT) technologies that propelled scientific discovery and created repositories of new information. We also call for the use of evidence-based teaching practices to engage students in ways that promote equity and learning. The complex datasets produced by HT approaches can open the doors to discovery of novel genes, drugs, and regulatory networks, so students need experience with the effective design, implementation, and analysis of HT research. Nevertheless, we miss opportunities to contextualize, define, and explain the potential and limitations of HT methods. One evidence-based approach is to engage students in realistic HT case studies. HT cases immerse students with messy data, asking them to critically consider data analysis, experimental design, ethical implications, and HT technologies.The NSF HITS (High-throughput Discovery Science and Inquiry-based Case Studies for Today’s Students) Research Coordination Network in Undergraduate Biology Education seeks to improve student quantitative skills and participation in HT discovery. Researchers and instructors in the network learn about case pedagogy, HT technologies, publicly available datasets, and computational tools. Leveraging this training and interdisciplinary teamwork, HITS participants then create and implement HT cases. Our initial case collection has been used in >15 different courses at a variety of institutions engaging >600 students in HT discovery. We share here our rationale for engaging students in HT science, our HT cases, and network model to encourage other life science educators to join us and further develop and integrate HT complex datasets into curricula.more » « less
-
Abstract While it is essential for life science students to be trained in modern techniques and approaches, rapidly developing, interdisciplinary fields such as bioinformatics present distinct challenges to undergraduate educators. In particular, many educators lack training in new fields, and high‐quality teaching and learning materials may be sparse. To address this challenge with respect to bioinformatics, the Network for the Integration of Bioinformatics into Life Science Education (NIBLSE), in partnership with Quantitative Undergraduate Biology Education and Synthesis (QUBES), developed incubators, a novel collaborative process for the development of open educational resources (OER). Incubators are short‐term, online communities that refine unpublished teaching lessons into more polished and widely usable learning resources. The resulting products are published and made freely available in the NIBLSE Resource Collection, providing recognition of scholarly work by incubator participants. In addition to producing accessible, high‐quality resources, incubators also provide opportunities for faculty development. Because participants are intentionally chosen to represent a range of expertise in bioinformatics and pedagogy, incubators also build professional connections among educators with diverse backgrounds and perspectives and promote the discussion of practical issues involved in deploying a resource in the classroom. Here we describe the incubator process and provide examples of beneficial outcomes. Our experience indicates that incubators are a low cost, short‐term, flexible method for the development of OERs and professional community that could be adapted to a variety of disciplinary and pedagogical contexts.