skip to main content


Search for: All records

Creators/Authors contains: "Robinson, Joshua A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. A scalable platform to synthesize ultrathin heavy metals may enable high efficiency charge-to-spin conversion for next-generation spintronics. Here we report the synthesis of air-stable, epitaxially registered monolayer Pb underneath graphene on SiC (0001) by confinement heteroepitaxy (CHet). Diffraction, spectroscopy, and microscopy reveal CHet-based Pb intercalation predominantly exhibits a mottled hexagonal superstructure due to an ordered network of Frenkel-Kontorova-like domain walls. The system’s air stability enables ex-situ spin torque ferromagnetic resonance (ST-FMR) measurements that demonstrate charge-to-spin conversion in graphene/Pb/ferromagnet heterostructures with a 1.5× increase in the effective field ratio compared to control samples. 
    more » « less
    Free, publicly-accessible full text available August 5, 2025
  3. Free, publicly-accessible full text available February 7, 2025
  4. Free, publicly-accessible full text available January 17, 2025
  5. Free, publicly-accessible full text available February 1, 2025
  6. The STM tip is used to visualize and to engineer the intercalated indium at the interface between graphene and SiC substrate with atomic precision.

     
    more » « less
    Free, publicly-accessible full text available October 10, 2024
  7. Free, publicly-accessible full text available March 26, 2025
  8. Free, publicly-accessible full text available December 12, 2024
  9. Abstract

    Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$S0) and fabricate it with scanning tunneling microscopy (STM). The Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$S0electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

     
    more » « less
    Free, publicly-accessible full text available April 26, 2025
  10. Free, publicly-accessible full text available January 18, 2025