skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roccapriore, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Experimental science is enabled by the combination of synthesis, imaging, and functional characterization organized into evolving discovery loop. Synthesis of new material is typically followed by a set of characterization steps aiming to provide feedback for optimization or discover fundamental mechanisms. However, the sequence of synthesis and characterization methods and their interpretation, or research workflow, has traditionally been driven by human intuition and is highly domain specific. Here, we explore concepts of scientific workflows that emerge at the interface between theory, characterization, and imaging. We discuss the criteria by which these workflows can be constructed for special cases of multiresolution structural imaging and functional characterization, as a part of more general material synthesis workflows. Some considerations for theory–experiment workflows are provided. We further pose that the emergence of user facilities and cloud labs disrupts the classical progression from ideation, orchestration, and execution stages of workflow development. To accelerate this transition, we propose the framework for workflow design, including universal hyperlanguages describing laboratory operation, ontological domain matching, reward functions and their integration between domains, and policy development for workflow optimization. These tools will enable knowledge-based workflow optimization; enable lateral instrumental networks, sequential and parallel orchestration of characterization between dissimilar facilities; and empower distributed research. 
    more » « less
  2. Abstract Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation. 
    more » « less
  3. Abstract Spatial confinement of matter in functional nanostructures has propelled these systems to the forefront of nanoscience, both as a playground for exotic physics and quantum phenomena and in multiple applications including plasmonics, optoelectronics, and sensing. In parallel, the emergence of monochromated electron energy loss spectroscopy (EELS) has enabled exploration of local nanoplasmonic functionalities within single nanoparticles and the collective response of nanoparticle assemblies, providing deep insight into associated mechanisms. However, modern synthesis processes for plasmonic nanostructures are often limited in the types of accessible geometry, and materials and are limited to spatial precisions on the order of tens of nm, precluding the direct exploration of critical aspects of the structure‐property relationships. Here, the atomic‐sized probe of the scanning transmission electron microscope is used to perform precise sculpting and design nanoparticle configurations. Using low‐loss EELS, dynamic analyses of the evolution of the plasmonic response are provided. It is shown that within self‐assembled systems of nanoparticles, individual nanoparticles can be selectively removed, reshaped, or patterned with nanometer‐level resolution, effectively modifying the plasmonic response in both space and energy. This process significantly increases the scope for design possibilities and presents opportunities for unique structure development, which are ultimately the key for nanophotonic design. 
    more » « less
  4. Abstract Design of nanoscale structures with desired optical properties is a key task for nanophotonics. Here, the correlative relationship between local nanoparticle geometries and their plasmonic responses is established using encoder‐decoder neural networks. In theim2specnetwork, the relationship between local particle geometries and local spectra is established via encoding the observed geometries to a small number of latent variables and subsequently decoding into plasmonic spectra; in thespec2imnetwork, the relationship is reversed. Surprisingly, these reduced descriptions allow high‐veracity predictions of local responses based on geometries for fixed compositions and surface chemical states. Analysis of the latent space distributions and the corresponding decoded and closest (in latent space) encoded images yields insight into the generative mechanisms of plasmonic interactions in the nanoparticle arrays. Ultimately, this approach creates a path toward determining configurations that yield the spectrum closest to the desired one, paving the way for stochastic design of nanoplasmonic structures. 
    more » « less