Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 7, 2025
-
Freshwater salinization from anthropogenic activities threatens water quality and habitat suitability for many lakes and rivers in North America. Recognizing that salinization is a stress on freshwater environments globally, research on watershed salt transport is necessary for informed management strategies. Prior to this research, there were few studies that examined salt export regimes along a river–lake continuum to investigate the drivers, temporal dynamics, and modulators of freshwater salinization. Here, we use high-frequency in situ monitoring to assess specific conductance–discharge (cQ) relationships, chloride concentrations and fluxes, and the role of lakes in downstream salt transport. The Upper Yahara River Watershed in southern Wisconsin, USA, is a mixed urban and agricultural watershed where the lakes' chloride concentrations have risen from < 5 mg L−1 in the 1940s to > 50–80 mg L−1 in 2021. Our results suggest cQ behavior depends on land use, with urban areas exhibiting more frequent mobilization events during stormflow and agricultural areas exhibiting predominantly dilution dynamics. In addition, chloride loading is driven by hydrology and watershed size whereas concentrations and yields are a function of anthropogenic drivers like urbanization. We demonstrate how an in-network lake attenuates downstream salinity, dampening the hydrologic, anthropogenic, and seasonal patterns observed in rivers upstream of the lake. Importantly, biogeochemical processes in lakes overlay a seasonal signal on salinity that must be considered when investigating temporal dynamics of anthropogenic salinization. This research contributes to understanding of temporal dynamics of salt export through watersheds and can be used to inform management strategies for habitat protection.more » « less
-
Conductivity and chloride were measured for 2 years in nine tributaries of Lake Mendota and Lake Monona in Dane County, WI. HOBO Conductivity loggers continuously measured absolute conductivity and water temperature every 30 minutes. Breaks in data collection were due to a calibration period or if the loggers were out of the water. Grab samples for chloride concentration occurred weekly or biweekly. Conductivity and water temperature were measured with a field meter at each sampling excursion. This data was needed for a master’s research thesis with the goal of characterizing the spatial distribution and loading of chloride in the Upper Yahara River Watershed.more » « less
-
Anthropogenic freshwater salinization affects thousands of lakes worldwide, and yet little is known about how salt loading may shift timing of lake stratification and spring mixing in dimictic lakes. Here, we investigate the impact of salinization on mixing in Lakes Mendota and Monona, Wisconsin, by deploying under-ice buoys to record salinity gradients, using an analytical approach to quantify salinity thresholds that prevent spring mixing, and running an ensemble of vertical one-dimensional hydrodynamic lake models (GLM, GOTM, and Simstrat) to investigate the long-term impact of winter salt loading on mixing and stratification. We found that spring salinity gradients between surface and bottom waters persist up to a month after ice-off, and that theory predicts a salinity gradient of 1.3–1.4 g kg-1 would prevent spring mixing. Numerical models project that salt loading delays spring mixing and increases water column stability, with ramifications for oxygenation of bottom waters, biogeochemistry, and lake habitability.more » « less
-
Scripts, model configurations and outputs to process the data and recreate the figures from Ladwig, R., Rock, L.A, Dugan, H.A. (-): Impact of salinization on lake stratification and spring mixing. This repository includes the setup and output from the lake model ensemble (GLM, GOTM, Simstrat) ran on the lakes Mendota and Monona. Scripts to run the models are located under /numerical and the scripts to process the results for the discussion of the paper are in the top main repository. The scripts to derive the theoretical solution are located under /analytical. Buoy monitoring data are located under /fieldmonitoring. The final figures are located under /figs_HD.
-
The concentrations of conservative solutes in seepage lakes are determined by the relative inputs of precipitation vs. groundwater. In areas of road salt application, seepage lakes may be at high risk of salinization depending on groundwater flow. Here, we revisit a 1992 analysis on the salinization of Sparkling Lake, a deep seepage lake in Northern Wisconsin. The original analysis predicted a rapid increase in chloride concentrations before reaching a steady steady of 8 mg L−1by 2020. Forty years of monitoring Sparkling Lake show that rather than reaching a dynamic equilibrium, chloride concentrations have steadily increased. We update the original box model approach by adding a soil reservoir component that shows the slow steady rise in chloride is the result of terrestrial retention. For freshwater rivers and lakes, chloride retention on the landscape will both delay chloride impairment and prolong recovery and must be considered when modeling future chloride contamination risk.