skip to main content

Search for: All records

Creators/Authors contains: "Rode, S. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 7, 2023
  2. Abstract In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) 1 . These partons subsequently emit further partons in a process that can be described as a parton shower 2 , which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known asmore »the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m Q and energy E , within a cone of angular size m Q / E around the emitter 3 . Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques 4,5 to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.« less
    Free, publicly-accessible full text available May 19, 2023
  3. A bstract A measurement of inclusive, prompt, and non-prompt J/ ψ production in p-Pb collisions at a nucleon-nucleon centre-of-mass energy $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV is presented. The inclusive J/ ψ mesons are reconstructed in the dielectron decay channel at midrapidity down to a transverse momentum p T = 0. The inclusive J/ ψ nuclear modification factor R pPb is calculated by comparing the new results in p-Pb collisions to a recently measured proton-proton reference at the same centre-of-mass energy. Non-prompt J/ ψ mesons, which originate from the decay of beauty hadrons, are separated frommore »promptly produced J/ ψ on a statistical basis for p T larger than 1.0 GeV/ c . These results are based on the data sample collected by the ALICE detector during the 2016 LHC p-Pb run, corresponding to an integrated luminosity $$ \mathcal{L} $$ L int = 292 ± 11 μ b − 1 , which is six times larger than the previous publications. The total uncertainty on the p T -integrated inclusive J/ ψ and non-prompt J/ ψ cross section are reduced by a factor 1.7 and 2.2, respectively. The measured cross sections and R pPb are compared with theoretical models that include various combinations of cold nuclear matter effects. From the non-prompt J/ ψ production cross section, the $$ \mathrm{b}\overline{\mathrm{b}} $$ b b ¯ production cross section at midrapidity, $$ {\mathrm{d}\sigma}_{\mathrm{b}\overline{\mathrm{b}}} $$ d σ b b ¯ / d y , and the total cross section extrapolated over full phase space, $$ {\sigma}_{\mathrm{b}\overline{\mathrm{b}}} $$ σ b b ¯ , are derived.« less
    Free, publicly-accessible full text available June 1, 2023
  4. Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available January 1, 2023
  6. Free, publicly-accessible full text available November 1, 2022
  7. Free, publicly-accessible full text available November 1, 2022
  8. Abstract Measurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions at $$\sqrt{s_{\mathrm {NN}}}$$ s NN   $$=$$ =  2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range $$|\eta |<0.8$$ | η | < 0.8 and transverse momentum $$0.2< p_{\mathrm{T}} < 2.0$$ 0.2 < p T < 2.0  GeV/ c . The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The $$\eta $$ η and $$p_{\mathrm{T}}$$ p T dependences of the fluctuations and their evolution with respect to collision centralitymore »are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions.« less
    Free, publicly-accessible full text available November 1, 2022
  9. A bstract The transverse momentum ( p T ) differential cross section of the charm-strange baryon $$ {\Xi}_{\mathrm{c}}^0 $$ Ξ c 0 is measured at midrapidity (| y | < 0.5) via its semileptonic decay into e + Ξ − ν e in pp collisions at $$ \sqrt{s} $$ s = 5 . 02 TeV with the ALICE detector at the LHC. The ratio of the p T -differential $$ {\Xi}_{\mathrm{c}}^0 $$ Ξ c 0 -baryon and D 0 -meson production cross sections is also reported. The measurements are compared with simulations with different tunes of the PYTHIA 8 eventmore »generator, with predictions from a statistical hadronisation model (SHM) with a largely augmented set of charm-baryon states beyond the current lists of the Particle Data Group, and with models including hadronisation via quark coalescence. The p T -integrated cross section of prompt $$ {\Xi}_{\mathrm{c}}^0 $$ Ξ c 0 -baryon production at midrapidity is also reported, which is used to calculate the baryon-to-meson ratio $$ {\Xi}_{\mathrm{c}}^0 $$ Ξ c 0 / D 0 = 0 . 20 ± 0 . 04 $$ {\left(\mathrm{stat}.\right)}_{-0.07}^{+0.08} $$ stat . − 0.07 + 0.08 (syst . ). These results provide an additional indication of a modification of the charm fragmentation from e + e − and e − p collisions to pp collisions.« less
    Free, publicly-accessible full text available October 1, 2022
  10. Free, publicly-accessible full text available October 1, 2022