skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Rodewald, Amanda D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the effectiveness of conservation interventions during times of political instability is important given how much of the world’s biodiversity is concentrated in politically fragile nations. Here, we investigate the effect of a political crisis on the relative performance of community managed forests versus protected areas in terms of reducing deforestation in Madagascar, a biodiversity hotspot. We use remotely sensed data and statistical matching within an event study design to isolate the effect of the crisis and post-crisis period on performance. Annual rates of deforestation accelerated at the end of the crisis and were higher in community forests than in protected areas. After controlling for differences in location and other confounding variables, we find no difference in performance during the crisis, but community-managed forests performed worse in post-crisis years. These findings suggest that, as a political crisis subsides and deforestation pressures intensify, community-based conservation may be less resilient than state protection.

    more » « less
  2. The conversion of forest to agriculture is considered one of the greatest threats to avian biodiversity, yet how species respond to habitat modification throughout the annual cycle remains unknown. We examined whether forest bird associations with agricultural habitats vary throughout the year, and if species traits influence these relationships. Using data from the eBird community‐science program, we investigated associations between agriculturally‐modified land cover and the occurrence of 238 forest bird species based on three sets of avian traits: migratory strategy, dietary guild, and foraging strategy. We found that the influence of agriculturally‐modified land cover on species distributions varied widely across periods and trait groups but highlighting several broad findings. First, migratory species showed strong seasonal differences in their response to agricultural land cover while resident species did not. Second, there was a migratory strategy by season interaction; Neotropical migrants were most negatively influenced by agricultural land cover during the breeding period while short‐distance migrants were most negatively influenced during the non‐breeding period. Third, regardless of season, some dietary (e.g. insectivores) and foraging guilds (e.g. bark foragers) consistently responded more negatively to agricultural land cover than others (e.g. omnivores and ground foragers, respectively). Fourth, there were greater differences among dietary guilds in their responses to agricultural land cover during the breeding period than during the non‐breeding period, perhaps reflecting how different habitat and ecological requirements enhance the susceptibility of some guilds during reproduction. These results suggest that management efforts across the annual cycle may be oversimplified and thus ineffective when based on broad ecological generalisations that are static in space and time.

    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature’s contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature’s contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species. This finding supports recent commitments by national governments under the Global Biodiversity Framework to conserve at least 30% of global lands and waters, and proposals to conserve half of the Earth. More than one-third of areas required for conserving nature’s contributions to people and species are also highly suitable for agriculture, renewable energy, oil and gas, mining, or urban expansion. This indicates potential conflicts among conservation, climate and development goals.

    more » « less
  4. Patchily distributed resources require individuals to balance risks and rewards associated with foraging sites that vary widely in quality, as determined by factors such as food availability, disturbance rates and predation risk. These trade‐offs may be especially acute for migratory species during the non‐breeding season when they must access high‐quality resources to recover from and prepare for migration. We assessed how density and body condition of non‐breeding Hudsonian GodwitsLimosa haemastica, acting as proxies for foraging site quality, were related to foraging success, availability of intertidal foraging habitat, landscape and bay characteristics, human disturbances and predation risk at 42 intertidal mudflats in southern Chile. Godwit density and body condition increased with availability of foraging habitat and foraging success, except on mudflats where individuals were more alert and agitated (i.e. higher scanning rates and more displacement flights). In contrast, body condition and density of foraging Godwits were lower at sites with high levels of perceived disturbance. Our findings suggest that the non‐lethal effects of disturbances (i.e. perceived risks) may affect behaviour (e.g. scanning rates and displacement flights) in ways that can compromise refuelling rates, body condition and performance across seasons. Thus, efforts to reduce disturbances to individuals foraging on tidal mudflats may be important to conserve migratory shorebirds, a guild undergoing severe population declines.

    more » « less
  5. Abstract

    Migratory birds that experience poor overwintering conditions are often late to arrive at the breeding grounds, which is known to depress individual fitness. Despite the importance of this carryover effect, few studies have investigated how individuals can modify migratory behaviors en route to reduce delays on arrival and whether accelerating migration incurs survival costs. To examine this, we used Motus Wildlife Tracking System to track individual American redstarts (Setophaga ruticilla) as they migrated from wintering grounds in Southwest Jamaica through Florida en route to their breeding areas. We leveraged long‐term data on spring departure timing and breeding latitude to quantify the relative departure dates (early vs. delayed) of tagged individuals, which we then related to individual migration rates and apparent annual survival. Compared to those initiating migration earlier, individuals that departed relatively late (10‐day delay) migrated at a 43% faster rate, which decreased their annual survival by 6.3%. Our results are consistent with the hypothesis that spring migrants use speed to compensate for departure delays despite incurring survival costs. This compensatory behavior may potentially underly differential survival during spring migration and may be particularly widespread across short‐lived migratory birds generally considered time‐constrained.

    more » « less
  6. Abstract

    Citizen and community science datasets are typically collected using flexible protocols. These protocols enable large volumes of data to be collected globally every year; however, the consequence is that these protocols typically lack the structure necessary to maintain consistent sampling across years. This can result in complex and pronounced interannual changes in the observation process, which can complicate the estimation of population trends because population changes over time are confounded with changes in the observation process.

    Here we describe a novel modelling approach designed to estimate spatially explicit species population trends while controlling for the interannual confounding common in citizen science data. The approach is based on Double machine learning, a statistical framework that uses machine learning (ML) methods to estimate population change and the propensity scores used to adjust for confounding discovered in the data. ML makes it possible to use large sets of features to control for confounding and to model spatial heterogeneity in trends. Additionally, we present a simulation method to identify and adjust for residual confounding missed by the propensity scores.

    To illustrate the approach, we estimated species trends using data from the citizen science project eBird. We used a simulation study to assess the ability of the method to estimate spatially varying trends when faced with realistic confounding and temporal correlation. Results demonstrated the ability to distinguish between spatially constant and spatially varying trends. There were low error rates on the estimated direction of population change (increasing/decreasing) at each location and high correlations on the estimated magnitude of population change.

    The ability to estimate spatially explicit trends while accounting for confounding inherent in citizen science data has the potential to fill important information gaps, helping to estimate population trends for species and/or regions lacking rigorous monitoring data.

    more » « less
  7. Massive wildlife losses over the past 50 y have brought new urgency to identifying both the drivers of population decline and potential solutions. We provide large-scale evidence that air pollution, specifically ozone, is associated with declines in bird abundance in the United States. We show that an air pollution regulation limiting ozone precursors emissions has delivered substantial benefits to bird conservation. Our estimates imply that air quality improvements over the past 4 decades have stemmed the decline in bird populations, averting the loss of 1.5 billion birds, ∼20% of current totals. Our results highlight that in addition to protecting human health, air pollution regulations have previously unrecognized and unquantified conservation cobenefits.

    more » « less
  8. Abstract Aim

    Artificial light at night (ALAN) and roads are known threats to nocturnally migrating birds. How associations with ALAN and roads are defined in combination for these species at the population level across the full annual cycle has not been explored.


    Western Hemisphere.


    We estimated range‐wide exposure, predictor importance and the prevalence of positive associations with ALAN and roads at a weekly temporal resolution for 166 nocturnally migrating bird species in three orders: Passeriformes (n = 104), Anseriformes (n = 27) and Charadriiformes (n = 35). We clustered Passeriformes based on the prevalence of positive associations.


    Positive associations with ALAN and roads were more prevalent for Passeriformes during migration when exposure and importance were highest. Positive associations with ALAN and roads were more prevalent for Anseriformes and Charadriiformes during the breeding season when exposure was lowest. Importance was uniform for Anseriformes and highest during migration for Charadriiformes. Our cluster analysis identified three groups of Passeriformes, each having similar associations with ALAN and roads. The first occurred in eastern North America during migration where exposure, prevalence, and importance were highest. The second wintered in Mexico and Central America where exposure, prevalence and importance were highest. The third occurred throughout North America where prevalence was low, and exposure and importance were uniform. The first and second were comprised of dense habitat specialists and long‐distance migrants. The third was comprised of open habitat specialists and short distance migrants.

    Main conclusions

    Our findings suggest ALAN and roads pose the greatest risk during migration for Passeriformes and during the breeding season for Anseriformes and Charadriiformes. Our results emphasise the close relationship between ALAN and roads, the diversity of associations dictated by taxonomy, exposure, migration strategy and habitat and the need for more informed and comprehensive mitigation strategies where ALAN and roads are treated as interconnected threats.

    more » « less
  9. Abstract

    Events during one stage of the annual cycle can reversibly affect an individual's condition and performance not only within that stage, but also in subsequent stages (i.e. reversible state effects). Despite strong conceptual links, however, few studies have been able to empirically link individual‐level reversible state effects with larger‐scale demographic processes.

    We studied both survival and potential reversible state effects in a long‐distance migratory shorebird, the Hudsonian GodwitLimosa haemastica. Specifically, we estimated period‐specific survival probabilities across the annual cycle and examined the extent to which an individual's body condition, foraging success and habitat quality during the nonbreeding season affected its subsequent survival and reproductive performance.

    Godwit survival rates were high throughout the annual cycle, but lowest during the breeding season, only slightly higher during southbound migration and highest during the stationary nonbreeding season. Our results indicate that overwintering godwits foraging in high‐quality habitats had comparably better nutritional status and pre‐migratory body condition, which in turn improved their return rates and the likelihood that their nests and chicks survived during the subsequent breeding season.

    Reversible state effects thus appeared to link events between nonbreeding and breeding seasons via an individual's condition, in turn affecting their survival and subsequent reproductive performance. Our study thus provides one of the few empirical demonstrations of theoretical predictions that reversible state effects have the potential to influence population dynamics.

    more » « less
  10. Abstract

    Neotropical countries receive financing and effort from temperate nations to aid the conservation of migratory species that move between temperate and tropical regions. If allocated strategically, these resources could simultaneously contribute to other conservation initiatives. In this study, we use novel distribution maps to show how those resources could aid planning for the recovery of threatened resident vertebrates.

    Using eBird‐based relative abundance estimates, we first identified areas with high richness of Neotropical migrant landbirds of conservation concern (23 species) during the stationary non‐breeding period. Within these areas, we then identified threatened species richness, projected forest loss and conducted a prioritization for 1,261 red‐listed vertebrates using Terrestrial Area‐of‐Habitat maps.

    Richness for migrants was greatest along a corridor from the Yucatan peninsula south to the northern Andes but also included south‐west Mexico and Hispaniola. Protected areas account for 22% of this region while 21% is at risk of forest loss. Within this focal region for migrants, all four vertebrate groups showed hotspots of threatened species richness along the west and east Andean slopes. Taxa‐specific hotspots included montane areas of southern Mexico and central Guatemala (amphibians/reptiles) and the entire east slope of the Colombian East Andes (mammals).

    Our prioritization highlighted several areas of importance for conservation due to high threatened species richness and projected forest loss including (a) the Pacific dry forests of south‐west Mexico, (b) montane regions of northern Central America and (c) the west Andean slope of Colombia and Ecuador. At a landscape scale in southern Colombia, we show how conservation efforts for six Neotropical migrants could benefit 56 threatened residents that share a similar elevational range.

    Synthesis and applications. Funding and effort for migratory bird conservation also has potential to benefit threatened resident vertebrates in the Neotropics. Our study highlights how novel, high‐resolution information on species distributions and risk of forest loss can be integrated to identify priority areas for the two groups at regional and landscape scales. The approach and data can be further modified for more specific goals, such as within‐country initiatives.

    more » « less