skip to main content

Search for: All records

Creators/Authors contains: "Rodolakis, Fanny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The mechanism of unconventional superconductivity in correlated materials remains a great challenge in condensed matter physics. The recent discovery of superconductivity in infinite-layer nickelates, as an analog to high-Tccuprates, has opened a new route to tackle this challenge. By growing 8 nm Pr0.8Sr0.2NiO2films on the (LaAlO3)0.3(Sr2AlTaO6)0.7substrate, we successfully raise the superconducting onset transition temperatureTcin the widely studied SrTiO3-substrated nickelates from 9 K into 15 K, which indicates compressive strain is an efficient protocol to further enhance superconductivity in infinite-layer nickelates. Additionally, the x-ray absorption spectroscopy, combined with the first-principles and many-body simulations, suggest a crucial role of the hybridization between Ni and O orbitals in the unconventional pairing. These results also suggest the increase ofTcbe driven by the change of charge-transfer nature that would narrow the origin of general unconventional superconductivity in correlated materials to the covalence of transition metals and ligands.

    more » « less
  2. Abstract

    The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the$${d}_{{x}^{2}-{y}^{2}}$$dx2y2orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using CuL3and PrM5resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa2Cu3O7, where the Prf-electrons create a direct orbital bridge between CuO2planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.

    more » « less
  3. Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature. Similar to biological species such as Aplysia , habituation and sensitization of NiO possess time-dependent plasticity relying on both strength and time interval between stimuli. A combination of experimental approaches and first-principles calculations reveals that such learning behavior of NiO results from dynamic modulation of its defect and electronic structure. An artificial neural network model inspired by such nonassociative learning is simulated to show advantages for an unsupervised clustering task in accuracy and reducing catastrophic interference, which could help mitigate the stability–plasticity dilemma. Mott insulators can therefore serve as building blocks to examine learning behavior noted in biology and inspire new learning algorithms for artificial intelligence. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility—a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe 3 . The electron mobility is beyond 60,000 cm 2 V −1 s −1 , which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe 3 is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe 3 can be exfoliated to ultrathin flakes of three monolayers. 
    more » « less