skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodriguez Martinez, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using mass–radius composition models, small planets (R≲ 2R) are typically classified into three types: iron-rich, nominally Earth-like, and those with solid/liquid water and/or atmosphere. These classes are generally expected to be variations within a compositional continuum. Recently, however, Luque & Pallé observed that potentially Earth-like planets around M dwarfs are separated from a lower-density population by a density gap. Meanwhile, the results of Adibekyan et al. hint that iron-rich planets around FGK stars are also a distinct population. It therefore remains unclear whether small planets represent a continuum or multiple distinct populations. Differentiating the nature of these populations will help constrain potential formation mechanisms. We present theRhoPopsoftware for identifying small-planet populations.RhoPopemploys mixture models in a hierarchical framework and a nested sampler for parameter and evidence estimates. UsingRhoPop, we confirm the two populations of Luque & Pallé with >4σsignificance. The intrinsic scatter in the Earth-like subpopulation is roughly half that expected based on stellar abundance variations in local FGK stars, perhaps implying M dwarfs have a smaller spread in the major rock-building elements (Fe, Mg, Si) than FGK stars. We applyRhoPopto the Adibekyan et al. sample and find no evidence of more than one population. We estimate the sample size required to resolve a population of planets with Mercury-like compositions from those with Earth-like compositions for various mass–radius precisions. Only 16 planets are needed when σ M p = 5 % and σ R p = 1 % . At σ M p = 10 % and σ R p = 2.5 % , however, over 154 planets are needed, an order of magnitude increase. 
    more » « less