skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodriguez, Armando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Age and early life adversity (ELA) are both key determinants of health, but whether they target similar physiological mechanisms across the body is unknown due to limited multi-tissue datasets from well-characterized cohorts. We generated DNA methylation (DNAm) profiles across 14 tissues in 237 semi-free ranging rhesus macaques, with records of naturally occurring ELA. We show that age-associated DNAm variation is predominantly tissue-dependent, yet tissue-specific epigenetic clocks reveal that the pace of epigenetic aging is relatively consistent within individuals. ELA effects on loci are adversity-dependent, but a given ELA has a coordinated impact across tissues. Finally, ELA targeted many of the same loci as age, but the direction of these effects varied, indicating that ELA does not uniformly contribute to accelerated age in the epigenome. ELA thus imprints a coordinated, tissue-spanning epigenetic signature that is both distinct from and intertwined with age-related change, advancing our understanding of how early environments sculpt the molecular foundations of aging and disease. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. To broaden and promote the applications of unmanned aerial vehicles (UAVs), UAVs with agile and omnidirectional mobility enabled by full or over actuation are a growing field of research. However, the balance of motion agility and force (energy) efficiency is challenging for a fixed UAV structure. This paper presents the new design of a transformable UAV, which can operate as a coplanar hexacopter or as an omnidirectional multirotor based on different operation modes. The UAV has 100% force efficiency for launching or landing tasks in the coplanar mode. In the omnidirectional mode, the UAV is fully actuated in the air for agile mobility in six degrees of freedom (DOFs). Models and control design are developed to characterize the motion of the transformable UAV. Simulation results are presented to validate the transformable UAV design and the enhanced UAV performance, compared with a fixed structure. 
    more » « less