skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodriguez, Cristian E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon dots (CDots) are generally defined as small carbon nanoparticles (CNPs) with effective surface passivation, for which the classical synthesis is the functionalization of pre-existing CNPs with organic molecules. However, “dot” samples produced by “one-pot” thermal carbonization of organic precursors are also popular in the literature. These carbonization-produced samples may contain nano-carbon domains embedded in organic matters from the precursors that survived the thermal processing, which may be considered and denoted as “nano-carbon/organic hybrids”. Recent experimental evidence indicated that the two different kinds of dot samples are largely divergent in their photo-induced antibacterial functions. In this work, three representative carbonization-produced samples from the precursor of citric acid–oligomeric polyethylenimine mixture with processing conditions of 200 °C for 3 h (CS200), 330 °C for 6 h (CS330), and microwave heating (CSMT) were compared with the classically synthesized CDots on their photo-induced antiviral activities. The results suggest major divergences in the activities between the different samples. Interestingly, CSMT also exhibited significant differences between antibacterial and antiviral activities. The mechanistic origins of the divergences were explored, with the results of different antimicrobial activities among the hybrid samples rationalized in terms of the degree of carbonization in the sample production and the different sample structural and morphological characteristics. 
    more » « less
  2. Carbon dots (CDots) of small carbon nanoparticles with oligomeric polyethylenimine for surface functionalization, coupled with visible light exposure, were found highly effective in the inactivation of bacterial pathogens. In this study, using a representative strain of a major foodborne pathogen – Listeria monocytogenes , as a target, the effects of the CDots treatment at sublethal concentrations on bacterial functions/behaviors related to the biofilm formation ability/potential, including cell attachment and swimming motility, were assessed. On the consequence at molecular level, the expression levels of the genes that are related to cell attachment/adhesion, motility, flagellar synthesis, quorum sensing, and environmental stress response and virulence were found all being up-regulated. 
    more » « less