skip to main content


Search for: All records

Creators/Authors contains: "Rodriguez, Joseph E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report precise radial velocity (RV) observations of HD 212657 (= K2-167), a star shown by K2 to host a transiting sub-Neptune-sized planet in a 10 d orbit. Using Transiting Exoplanet Survey Satellite (TESS) photometry, we refined the planet parameters, especially the orbital period. We collected 74 precise RVs with the HARPS-N spectrograph between August 2015 and October 2016. Although this planet was first found to transit in 2015 and validated in 2018, excess RV scatter originally limited mass measurements. Here, we measure a mass by taking advantage of reductions in scatter from updates to the HARPS-N Data Reduction System (2.3.5) and our new activity mitigation method called CCF Activity Linear Model (CALM), which uses activity-induced line shape changes in the spectra without requiring timing information. Using the CALM framework, we performed a joint fit with RVs and transits using exofastv2 and find Mp = $6.3_{-1.4}^{+1.4}$  $\, M_{\hbox{$\oplus $}}$ and Rp = $2.33^{+0.17}_{-0.15}$  $\, R_{\hbox{$\oplus $}}$, which places K2-167 b at the upper edge of the radius valley. We also find hints of a secondary companion at a ∼22 d period, but confirmation requires additional RVs. Although characterizing lower mass planets like K2-167 b is often impeded by stellar variability, these systems especially help probe the formation physics (i.e. photoevaporation, core-powered mass-loss) of the radius valley. In the future, CALM or similar techniques could be widely applied to FGK-type stars, help characterize a population of exoplanets surrounding the radius valley, and further our understanding of their formation.

     
    more » « less
  2. Abstract

    Interpreting the short-timescale variability of the accreting, young, low-mass stars known as Classical T Tauri stars remains an open task. Month-long, continuous light curves from the Transiting Exoplanet Survey Satellite (TESS) have become available for hundreds of T Tauri stars. With this vast data set, identifying connections between the variability observed by TESS and short-timescale accretion variability is valuable for characterizing the accretion process. To this end, we obtained short-cadence TESS observations of 14 T Tauri stars in the Taurus star formation region along with simultaneous ground-based,UBVRI-band photometry to be used as accretion diagnostics. In addition, we combine our data set with previously published simultaneous near-UV–near-IR Hubble Space Telescope spectra for one member of the sample. We find evidence that much of the short-timescale variability observed in the TESS light curves can be attributed to changes in the accretion rate, but note significant scatter between separate nights and objects. We identify hints of time lags within our data set that increase at shorter wavelengths, which we suggest may be evidence of longitudinal density stratification of the accretion column. Our results highlight that contemporaneous, multiwavelength observations remain critical for providing context for the observed variability of these stars.

     
    more » « less
  3. Abstract

    Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b (e=0.2590.036+0.033) and TOI-5301 b (e=0.330.10+0.11). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.

     
    more » « less
    Free, publicly-accessible full text available June 25, 2025
  4. Abstract

    We present the discovery of TOI-1994b, a low-mass brown dwarf transiting a hot subgiant star on a moderately eccentric orbit. TOI-1994 has an effective temperature of7700410+720K, Vmagnitude of 10.51 mag and log(g) of3.9820.065+0.067. The brown dwarf has a mass of22.12.5+2.6MJ, a period of 4.034 days, an eccentricity of0.3410.059+0.054, and a radius of1.2200.071+0.082RJ. TOI-1994b is more eccentric than other transiting brown dwarfs with similar masses and periods. The population of low-mass brown dwarfs may have properties similar to planetary systems if they were formed in the same way, but the short orbital period and high eccentricity of TOI-1994b may contrast this theory. An evolved host provides a valuable opportunity to understand the influence stellar evolution has on the substellar companion’s fundamental properties. With precise age, mass, and radius, the global analysis and characterization of TOI-1994b augments the small number of transiting brown dwarfs and allows the testing of substellar evolution models.

     
    more » « less
  5. Abstract

    While secondary mass inferences based on single-lined spectroscopic binary (SB1) solutions are subject tosinidegeneracies, this degeneracy can be lifted through the observations of eclipses. We combine the subset of Gaia Data Release 3 SB1 solutions consistent with brown dwarf-mass secondaries with the Transiting Exoplanet Survey Satellite (TESS) Object of Interest (TOI) list to identify three candidate transiting brown dwarf systems. Ground-based precision radial velocity follow-up observations confirm that TOI-2533.01 is a transiting brown dwarf withM=723+3MJup=0.0690.003+0.003Morbiting TYC 2010-124-1 and that TOI-5427.01 is a transiting very low-mass star withM=932+2MJup=0.0880.002+0.002Morbiting UCAC4 515-012898. We validate TOI-1712.01 as a very low-mass star withM=827+7MJup=0.0790.007+0.007Mtransiting the primary in the hierarchical triple system BD+45 1593. Even after accounting for third light, TOI-1712.01 has a radius nearly a factor of 2 larger than predicted for isolated stars with similar properties. We propose that the intense instellation experienced by TOI-1712.01 diminishes the temperature gradient near its surface, suppresses convection, and leads to its inflated radius. Our analyses verify Gaia DR3 SB1 solutions in the low Doppler semiamplitude limit, thereby providing the foundation for future joint analyses of Gaia radial velocities and Kepler, K2, TESS, and PLAnetary Transits and Oscillations light curves for the characterization of transiting massive brown dwarfs and very low-mass stars.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Abstract

    JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperatureTeqand planetary radiusRpand are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.

     
    more » « less
    Free, publicly-accessible full text available April 23, 2025
  9. null (Ed.)