- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Eric C. (1)
-
Balgopal, Meena M (1)
-
Bombaci, Sara P (1)
-
DeSaix, Matthew G. (1)
-
Diaz-Clark, Elizabeth (1)
-
Frierson, Rickey (1)
-
Lavoie, Anna (1)
-
Morado, Melissa (1)
-
Murphy, Morgan (1)
-
Rodriguez, Marina (1)
-
Rodriguez, Marina D. (1)
-
Ruegg, Kristen C. (1)
-
Stafford, Nicole (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
DeSaix, Matthew G.; Rodriguez, Marina D.; Ruegg, Kristen C.; Anderson, Eric C. (, Methods in Ecology and Evolution)Abstract Low‐coverage whole‐genome sequencing (WGS) is increasingly used for the study of evolution and ecology in both model and non‐model organisms; however, effective application of low‐coverage WGS data requires the implementation of probabilistic frameworks to account for the uncertainties in genotype likelihoods.Here, we present a probabilistic framework for using genotype likelihoods for standard population assignment applications. Additionally, we derive the Fisher information for allele frequency from genotype likelihoods and use that to describe a novel metric, theeffective sample size, which figures heavily in assignment accuracy. We make these developments available for application through WGSassign, an open‐source software package that is computationally efficient for working with whole‐genome data.Using simulated and empirical data sets, we demonstrate the behaviour of our assignment method across a range of population structures, sample sizes and read depths. Through these results, we show that WGSassign can provide highly accurate assignment, even for samples with low average read depths (<0.01X) and among weakly differentiated populations.Our simulation results highlight the importance of equalizing the effective sample sizes among source populations in order to achieve accurate population assignment with low‐coverage WGS data. We further provide study design recommendations for population assignment studies and discuss the broad utility of effective sample size for studies using low‐coverage WGS data.more » « less
An official website of the United States government
