skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Roell, Yannik E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    The accumulation of species through time has been proposed to have a hump‐shaped relationship on volcanic islands (highest species richness during intermediate stages of an island's lifespan). Change in topographic complexity (TC) of islands over time is assumed to follow the same relationship. However, TC can be measured in different ways and may not have the same impact across taxonomic groups. Here, we quantify TC across the Galápagos Islands and test the assumption that TC follows a predictable trajectory with island age. Subsequently, we ask whether including TC improves statistical models seeking to explain variation in species richness across islands.

    Location

    Galápagos Archipelago, Ecuador.

    Taxon

    Native and endemic terrestrial animals and plants.

    Methods

    For each island, we generated eight TC indices from a 30‐m resolution digital elevation model. We tested for a relationship between each index and island age, and whether it significantly contributes to observed variation in species richness, using 11 different models for 12 taxonomic groups across the Galápagos Islands.

    Results

    Four TC indices were significantly negatively correlated with either island age or ontogenetic age and only one index followed the hump‐shaped relationship with age. No index consistently contributed to the variation in species richness for all taxonomic groups. However, for all 12 taxonomic groups, incorporating at least one TC index in modelling species richness improved one or more models. The most common TC index improving models was standard deviation of slope, although each index improved at least five models across all taxa. Different factors predicted taxon‐specific richness, and habitat diversity was significant for all taxa.

    Main conclusions

    Topographic complexity is an important component influencing species richness, but its impact likely differs among taxonomic groups and different scales. Therefore, future studies should incorporate broad, multi‐dimensional measures of TC to understand the biological importance of TC.

     
    more » « less
  2. Abstract Aim

    The accumulation of functional diversity in communities is poorly understood. Conveniently, the general dynamic model of island biogeography (GDM) makes predictions for how such diversity might accumulate over time. In this multiscale study of land snail communities on 10 oceanic archipelagos located in various regions of the globe, we test hypotheses of community assembly in systems where islands serve as chronosequences along island ontogeny.

    Location

    Ten volcanic archipelagos.

    Time period

    From 23 Ma to the present.

    Major taxa studied

    Endemic land snails.

    Methods

    Initially, we assembled geological island characteristics of area, isolation and ontogeny for all studied islands. We then characterized island‐scale biotic variables, including the species diversity and functional diversity of snail communities. From these data, we assessed relationships between island and snail community variables as predicted by the GDM, focusing initially on the islands of the Galápagos archipelago and thereafter with a broader analysis of 10 archipelagoes.

    Results

    As in other studies of island assemblages, in Galápagos we find a hump‐shaped curve of species richness, with depauperate snail faunas on early‐ontogeny islands, increasing species richness on mid‐ontogeny islands and low species richness on islands in late ontogeny. We find exceptionally low functional diversity on early‐ontogeny islands that increases through mid‐ontogeny, whereas late‐ontogeny islands exhibit a range of functional diversity. The analysis including all 10 archipelagos indicates a major role of archipelago‐specific factors. In both sets of analyses, functional diversity is exceptionally low on early‐ontogeny islands, and island ontogeny is a significant predictor of morphology.

    Main conclusions

    Consistent patterns of functional diversity across island ontogeny on all examined archipelagos indicate a common role for habitat filtering, ecological opportunity and competition in a diversity of systems, leading to predictable changes in functional diversity and average morphology through island ontogeny, whereas patterns of species richness appear subject to archipelago‐specific factors.

     
    more » « less