skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rogers, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2025
  2. Abstract. Across the Arctic, vast areas of permafrost are being degraded by climatechange, which has the potential to release substantial quantities ofnutrients, including nitrogen into large Arctic rivers. These rivers heavilyinfluence the biogeochemistry of the Arctic Ocean, so it is important tounderstand the potential changes to rivers from permafrost degradation. Thisstudy utilized dissolved nitrogen species (nitrate and dissolved organicnitrogen (DON)) along with nitrogen isotope values (δ15N-NO3- and δ15N-DON) of samples collectedfrom permafrost sites in the Kolyma River and the six largest Arctic rivers.Large inputs of DON and nitrate with a unique isotopically heavy δ15N signature were documented in the Kolyma, suggesting the occurrenceof denitrification and highly invigorated nitrogen cycling in the Yedomapermafrost thaw zones along the Kolyma. We show evidence for permafrost-derived DON being recycled to nitrate as it passes through the river,transferring the high 15N signature to nitrate. However, the potentialto observe these thaw signals at the mouths of rivers depends on the spatialscale of thaw sites, permafrost degradation, and recycling mechanisms. Incontrast with the Kolyma, with near 100 % continuous permafrost extent,the Ob River, draining large areas of discontinuous and sporadicpermafrost, shows large seasonal changes in both nitrate and DON isotopicsignatures. During winter months, water percolating through peat soilsrecords isotopically heavy denitrification signals in contrast with thelighter summer values when surface flow dominates. This early yeardenitrification signal was present to a degree in the Kolyma, but the abilityto relate seasonal nitrogen signals across Arctic Rivers to permafrostdegradation could not be shown with this study. Other large rivers in theArctic show different seasonal nitrogen trends. Based on nitrogen isotopevalues, the vast majority of nitrogen fluxes in the Arctic rivers is fromfresh DON sourced from surface runoff through organic-rich topsoil and notfrom permafrost degradation. However, with future permafrost thaw, otherArctic rivers may begin to show nitrogen trends similar to the Ob. Ourstudy demonstrates that nitrogen inputs from permafrost thaw can beidentified through nitrogen isotopes, but only on small spatial scales.Overall, nitrogen isotopes show potential for revealing integrated catchmentwide nitrogen cycling processes. 
    more » « less