skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rogers, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the decreasing cost of consumer display technologies making it easier for universities to have larger displays in classrooms, and the ubiquitous use of online tools such as collaborative whiteboards for remote learning during the COVID-19 pandemic, combining the two can be useful in higher education. This is especially true in visually intensive classes, such as data visualization courses, that can benefit from additional "space to teach," coined after the "space to think" sense-making idiom. In this paper, we reflect on our approach to using SAGE3, a collaborative whiteboard with advanced features, in higher education to teach visually intensive classes, provide examples of activities from our own visually-intensive courses, and present student feedback. We gather our observations into usage patterns for using content-rich canvases in education. 
    more » « less
  2. SAGE3 is software to augment the cyberinfrastructure-enhanced research and education enterprise by supporting data-intensive collaboration across a wide range of display devices from high-resolution display walls to laptops. This paper provides insight into SAGE3’s implementation, which significantly improves on prior generations of SAGE by leveraging emerging advancements in Web technologies and Artificial Intelligence. We also provide an overview of new usage patterns that we observed with SAGE3. 
    more » « less
  3. SAGE3 is software to augment the cyberinfrastructure-enhanced research and education enterprise by supporting data-intensive collaboration across a wide range of display devices from high-resolution display walls to laptops. This paper provides insight into SAGE3’s implementation, which significantly improves on prior generations of SAGE by leveraging emerging advancements in Web technologies and Artificial Intelligence. We also provide an overview of new usage patterns that we observed with SAGE3. 
    more » « less
  4. SAGE3 is software to augment the cyberinfrastructure-enhanced research and education enterprise by supporting data-intensive collaboration across a wide range of display devices from high-resolution display walls to laptops. This paper provides insight into SAGE3’s implementation, which significantly improves on prior generations of SAGE by leveraging emerging advancements in Web technologies and Artificial Intelligence. We also provide an overview of new usage patterns that we observed with SAGE3. 
    more » « less
  5. null (Ed.)
    Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro , therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening. 
    more » « less