skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rogers, Simon A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Empirical rules play a crucial role in industrial and experimental settings for efficiently determining the rheological properties of materials, thereby saving both time and resources. An example is the Cox–Merz rule, which equates the steady-shear viscosity with the magnitude of the complex viscosity obtained in oscillatory tests. This empirical rule provides access to the steady-shear viscosity that is useful for processing conditions without the instabilities associated with experiments at high shear rates. However, the Cox–Merz rule is empirical and has been shown to work in some cases and fail in others. The underlying connection between the different material functions remains phenomenological and the lack of a comprehensive understanding of the rheological physics allows for ambiguity to persist in the interpretation of material responses. In this work, we revisit the Cox–Merz rule using recovery rheology, which decomposes the strain into recoverable and unrecoverable components. When viewed through the lens of recovery rheology, it is clearly seen that the steady-shear viscosity comes from purely unrecoverable acquisition of strain, while the complex viscosity is defined in terms of contributions from both recoverable and unrecoverable components. With recovery tests in mind, we elucidate why the Cox–Merz rule works only in a limited set of conditions and present an approach that could allow for universal comparisons to be made. This work further highlights the significance of recovery rheology by showing how it is possible to extend beyond phenomenological approaches through clear rheophysical metrics obtained by decomposing the material response into recoverable and unrecoverable components. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Understanding the yielding of complex fluids is an important rheological challenge that affects our ability to engineer and process materials for a wide variety of applications. Common theoretical understandings of yield stress fluids follow the Oldroyd–Prager formalism in which the material behavior below the yield stress is treated as solidlike, and above the yield stress as liquidlike, with an instantaneous transition between the two states. This formalism was built on a quasi-static approach to the yield stress, while most applications, ranging from material processing to end user applications, involve a transient approach to yielding over a finite timescale. Using stress-controlled oscillatory shear experiments, we show that yield stress fluids flow below their yield stresses. This is quantified through measuring the strain shift, which is the value about which the strain oscillates during a stress-controlled test and is a function of only the unrecoverable strain. Measurements of the strain shift are, therefore, measurements of flow having taken place. These experimental results are compared to the Herschel–Bulkley form of the Saramito model, which utilizes the Oldroyd–Prager formalism, and the recently published Kamani–Donley–Rogers (KDR) model, in which one constitutive equation represents the entire range of material responses. Scaling relationships are derived, which allow us to show why yield stress fluids will flow across all stresses, above and below their yield stress. Finally, derivations are presented that show strain shift can be used to determine average metrics previously attainable only through recovery rheology, and these are experimentally verified. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. The ability to concisely describe the dynamical behavior of soft materials through closed-form constitutive relations holds the key to accelerated and informed design of materials and processes. The conventional approach is to construct constitutive relations through simplifying assumptions and approximating the time- and rate-dependent stress response of a complex fluid to an imposed deformation. While traditional frameworks have been foundational to our current understanding of soft materials, they often face a twofold existential limitation: i) Constructed on ideal and generalized assumptions, precise recovery of material-specific details is usually serendipitous, if possible, and ii) inherent biases that are involved by making those assumptions commonly come at the cost of new physical insight. This work introduces an approach by leveraging recent advances in scientific machine learning methodologies to discover the governing constitutive equation from experimental data for complex fluids. Our rheology-informed neural network framework is found capable of learning the hidden rheology of a complex fluid through a limited number of experiments. This is followed by construction of an unbiased material-specific constitutive relation that accurately describes a wide range of bulk dynamical behavior of the material. While extremely efficient in closed-form model discovery for a real-world complex system, the model also provides insight into the underpinning physics of the material. 
    more » « less
  4. Graphene oxide (GO) has attracted attention in materials science and engineering due to its large aspect ratio and dispersibility in polar solvent including water. It has recently been applied to direct-ink-writing (DIW) printing to realize the fabrication of three-dimensional structures, suggesting a wide variety of potential applications. Without post-processing, DIW printing requires yield stress fluids to fully build three-dimensional objects. The key properties of these inks are the yield stress and the viscoelastic properties during yielding. DIW ink rheology has therefore received significant interest in materials science, as well as mechanical and chemical engineering. Despite this interest, the yielding process has not been clearly elucidated and understanding yielding remains an outstanding problem. In this study, we discuss the yielding behavior of GO colloids via oscillatory rheology by decomposing the total strain into the recoverable and unrecoverable parts through iterative experimental techniques. The recoverable and unrecoverable responses represent viscoelastic solid and plastic properties, respectively, and they are used to determine the averaged storage and dissipation of energies. By mapping these contributions, we more clearly elucidate the yielding behavior of the GO colloids and suggest guidelines for energy efficiency. Beyond the specific lessons learned regarding the DIW-relevant rheology of GO colloids, our study contributes to an evolving development of material-centric and energy-focused methods for understanding the out-of-equilibrium rheological physics associated with the yielding of soft materials. 
    more » « less
  5. Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing. 
    more » « less
  6. We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure–property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level. 
    more » « less
  7. Precise and reliable prediction of soft and structured materials’ behavior under flowing conditions is of great interest to academics and industrial researchers alike. The classical route to achieving this goal is to construct constitutive relations that, through simplifying assumptions, approximate the time- and rate-dependent stress response of a complex fluid to an imposed deformation. The parameters of these simplified models are then identified by suitable rheological testing. The accuracy of each model is limited by the assumptions made in its construction, and, to a lesser extent, the ability to determine numerical values of parameters from the experimental data. In this work, we leverage advances in machine learning methodologies to construct rheology-informed graph neural networks (RhiGNets) that are capable of learning the hidden rheology of a complex fluid through a limited number of experiments. A multifidelity approach is then taken to combine limited additional experimental data with the RhiGNet predictions to develop “digital rheometers” that can be used in place of a physical instrument. 
    more » « less
  8. A full understanding of the sequence of processes exhibited by yield stress fluids under large amplitude oscillatory shearing is developed using multiple experimental and analytical approaches. A novel component rate Lissajous curve, where the rates at which strain is acquired unrecoverably and recoverably are plotted against each other, is introduced and its utility is demonstrated by application to the analytical responses of four simple viscoelastic models. Using the component rate space, yielding and unyielding are identified by changes in the way strain is acquired, from recoverably to unrecoverably and back again. The behaviors are investigated by comparing the experimental results with predictions from the elastic Bingham model that is constructed using the Oldroyd–Prager formalism and the recently proposed continuous model by Kamani, Donley, and Rogers in which yielding is enhanced by rapid acquisition of elastic strain. The physical interpretation gained from the transient large amplitude oscillatory shear (LAOS) data is compared to the results from the analytical sequence of physical processes framework and a novel time-resolved Pipkin space. The component rate figures, therefore, provide an independent test of the interpretations of the sequence of physical processes analysis that can also be applied to other LAOS analysis frameworks. Each of these methods, the component rates, the sequence of physical processes analysis, and the time-resolved Pipkin diagrams, unambigiously identifies the same material physics, showing that yield stress fluids go through a sequence of physical processes that includes elastic deformation, gradual yielding, plastic flow, and gradual unyielding. 
    more » « less