skip to main content

Search for: All records

Creators/Authors contains: "Rohr, Jason R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Immunity changes through ontogeny and can mediate facilitative and inhibitory interactions among co-infecting parasite species. In amphibians, most immune memory is not carried through metamorphosis, leading to variation in the complexity of immune responses across life stages. To test if the ontogeny of host immunity might drive interactions among co-infecting parasites, we simultaneously exposed Cuban treefrogs ( Osteopilus septentrionalis ) to a fungus ( Batrachochytrium dendrobaditis , Bd) and a nematode ( Aplectana hamatospicula ) at tadpole, metamorphic and post-metamorphic life stages. We measured metrics of host immunity, host health and parasite abundance. We predicted facilitative interactions between co-infecting parasites as the different immune responses hosts mount to combat these infectious are energetically challenging to mount simultaneously. We found ontogenetic differences in IgY levels and cellular immunity but no evidence that metamorphic frogs were more immunosuppressed than tadpoles. There was also little evidence that these parasites facilitated one another and no evidence that A. hamatospicula infection altered host immunity or health. However, Bd, which is known to be immunosuppressive, decreased immunity in metamorphic frogs. This made metamorphic frogs both less resistant and less tolerant of Bd infection than the other life stages. These findings indicate that changes in immunity alteredmore »host responses to parasite exposures throughout ontogeny. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’.« less
    Free, publicly-accessible full text available July 31, 2024
  2. Free, publicly-accessible full text available January 1, 2024
  3. Free, publicly-accessible full text available July 27, 2024
  4. Free, publicly-accessible full text available March 1, 2024
  5. In streams macroinvertebrate density and disturbance-sensitive taxa have decreased, and disturbance-tolerant taxa have increased.
    Free, publicly-accessible full text available May 3, 2024
  6. Free, publicly-accessible full text available February 1, 2024
  7. Free, publicly-accessible full text available February 1, 2024
  8. Predicting and disrupting transmission of human parasites from wildlife hosts or vectors remains challenging because ecological interactions can influence their epidemiological traits. Human schistosomes, parasitic flatworms that cycle between freshwater snails and humans, typify this challenge. Human exposure risk, given water contact, is driven by the production of free-living cercariae by snail populations. Conventional epidemiological models and management focus on the density of infected snails under the assumption that all snails are equally infectious. However, individual-level experiments contradict this assumption, showing increased production of schistosome cercariae with greater access to food resources. We built bioenergetics theory to predict how resource competition among snails drives the temporal dynamics of transmission potential to humans and tested these predictions with experimental epidemics and demonstrated consistency with field observations. This resource-explicit approach predicted an intense pulse of transmission potential when snail populations grow from low densities, i.e., when per capita access to resources is greatest, due to the resource-dependence of cercarial production. The experiment confirmed this prediction, identifying a strong effect of infected host size and the biomass of competitors on per capita cercarial production. A field survey of 109 waterbodies also found that per capita cercarial production decreased as competitor biomass increased. Furthermore »quantification of snail densities, sizes, cercarial production, and resources in diverse transmission sites is needed to assess the epidemiological importance of resource competition and support snail-based disruption of schistosome transmission. More broadly, this work illustrates how resource competition can sever the correspondence between infectious host density and transmission potential.« less