skip to main content

Search for: All records

Creators/Authors contains: "Rokyta, Darin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yoder, Anne (Ed.)
    Abstract Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms—such as higher absolute levels of expression—are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey.
    Free, publicly-accessible full text available April 1, 2023
  2. Ecologically divergent selection can lead to the evolution of reproductive isolation through the process of ecological speciation, but the balance of responsible evolutionary forces is often obscured by an inadequate assessment of demographic history and the genetics of traits under selection. Snake venoms have emerged as a system for studying the genetic basis of adaptation because of their genetic tractability and contributions to fitness, and speciation in venomous snakes can be associated with ecological diversification such as dietary shifts and corresponding venom changes. Here, we explored the neurotoxic (type A)–hemotoxic (type B) venom dichotomy and the potential for ecological speciation among Timber Rattlesnake (Crotalus horridus) populations. Previous work identified the genetic basis of this phenotypic difference, enabling us to characterize the roles geography, history, ecology, selection, and chance play in determining when and why new species emerge or are absorbed. We identified significant genetic, proteomic, morphological, and ecological/environmental differences at smaller spatial scales, suggestive of incipient ecological speciation between type A and type B C. horridus. Range-wide analyses, however, rejected the reciprocal monophyly of venom type, indicative of varying intensities of introgression and a lack of reproductive isolation across the range. Given that we have now established the phenotypic distributionsmore »and ecological niche models of type A and B populations, genome-wide data are needed and capable of determining whether type A and type B C. horridus represent distinct, reproductively isolated lineages due to incipient ecological speciation or differentiated populations within a single species.« less
  3. The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δδ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. bivirgatus toxins also contains the previously named maticotoxins and is somewhat closely related to cytotoxins from other elapids. However, the toxins from this clade that have been characterized are not themselves cytotoxic. No other toxins show clear relationships to toxins of known function from other species.
  4. The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack of biochemical tools for examining Nav1.8 gating mechanisms. Arizona bark scorpion (Centruroides sculpturatus) venom proteins inhibit Nav1.8 and block pain in grasshopper mice (Onychomys torridus). These proteins provide tools for examining Nav1.8 structure–activity relationships. To identify proteins that inhibit Nav1.8 activity, venom samples were fractioned using liquid chromatography (reversed-phase and ion exchange). A recombinant Nav1.8 clone expressed in ND7/23 cells was used to identify subfractions that inhibited Nav1.8 Na+ current. Mass-spectrometry-based bottom-up proteomic analyses identified unique peptides from inhibitory subfractions. A search of the peptides against the AZ bark scorpion venom gland transcriptome revealed four novel proteins between 40 and 60% conserved with venom proteins from scorpions in four genera (Centruroides, Parabuthus, Androctonus, and Tityus). Ranging from 63 to 82 amino acids, each primary structure includes eight cysteines and a “CXCE” motif, where X = an aromatic residue (tryptophan, tyrosine, or phenylalanine). Electrophysiology data demonstrated that the inhibitory effects of bioactive subfractions can be removed by hyperpolarizingmore »the channels, suggesting that proteins may function as gating modifiers as opposed to pore blockers.« less
  5. Ontogenetic shifts in venom occur in many snakes but establishing their nature as gradual or discrete processes required additional study. We profiled shifts in venom expression from the neonate to adult sizes of two rattlesnake species, the eastern diamondback and the timber rattlesnake. We used serial sampling and venom chromatographic profiling to test if ontogenetic change occurs gradually or discretely. We found evidence for gradual shifts in overall venom composition in six of eight snakes, which sometimes spanned more than two years. Most chromatographic peaks shift gradually, but one quarter shift in a discrete fashion. Analysis of published diet data showed gradual shifts in overall diet composition across the range of body sizes attained by our eight study animals, while the shifts in abundance of different prey classes varied in form from gradual to discrete. Testosterone concentrations were correlated with the change in venom protein composition, but the relationship is not strong enough to suggest causation. Venom research employing simple juvenile versus adult size thresholds may be failing to account for continuous variation in venom composition lifespan. Our results imply that venom shifts represent adaptive matches to dietary shifts and highlight venom for studies of alternative gene regulatory mechanisms.